ECONOMIA AMBIENTAL I

TEXTO

MSC. ROSARIO AMBROGI ROMAN

Universidad Nacional Autónoma de Nicaragua
UNAN Managua
Facultad Ciencia

Universidad Nacional Autónoma de Nicaragua
UNAN Managua
Recinto Universitario Carlos Fonseca Amador
Índice

CAPITULO I
LA ECONOMIA AMBIENTAL COMO CIENCIA SOCIAL APLICADA ... 5
1.1 Origen y Evolución de la Economía Ambiental .. 5
1.2 EVOLUCION DE LA FUNCION DE LOS RECURSOS AMBIENTALES EN EL PENSAMIENTO ECONOMICO ... 7
1.3 OBJETO Y METODO DE ESTUDIO .. 15
1.4 RELACIÓN Y DIFERENCIA ENTRE LA ECONOMÍA AMBIENTAL - ECONOMÍA DEL BIENESTAR - Y ECONOMÍA ECOLÓGICA ... 15
1.5 LA ALTERACION AMBIENTAL UNA CONSECUENCIA ANTROPOGENICA QUE DISMINUYE LOS NIVELES DE BIENESTAR DE LA SOCIEDAD ... 20
Cuatro Grandes desastres naturales sucedidos en Nicaragua ... 22
1.6 CARACTERIZACION DE CONTAMINACION AMBIENTAL Y SUS DIFERENTES MODALIDADES .. 25
1.7 EL CAMBIO CLIMATICO UN PROBLEMA ECONOMICO ... 38

CAPITULO 2 ... 47
LAS EXTERNALIDADES UN PROBLEMA ECONOMICO .. 47
2.1 ECONOMIA DEL MEDIO AMBIENTE .. 49
2.2 HERRAMIENTAS MICROECONOMICAS .. 50
2.3 METODOS DE INTERVENCION PARA ALCANZAR LA CANTIDA ÓPTIMA DE EXTERNALIDAD NEGATIVA ... 55
2.4 LA GESTIÓN INTEGRAL DEL RIESGO UNA POLÍTICA AMBIENTAL PARA ENFRENTAR LA VULNERABILIDAD ANTE LOS DESASTRES QUE SE HACEN MÁS FRECUENTES COMO CONSECUENCIA DEL CAMBIO CLIMÁTICO (EJEMPLO DE EXTERNALIDAD NEGATIVA) ... 57

CAPITULO III ... 61
VALORACION ECONOMICA DE LOS RECURSOS NATURALES Y EL AMBIENTE. 61
INTRODUCCION .. 61
3.1 Necesidades y usos de la Valoración Económica de los Recursos Naturales (Bienes, servicios e impactos) ... 62
3. 2 EL VALOR ECONOMICO TOTAL DE LOS BIENES Y SERVICIOS AMBIENTALES (BSA) ... 64
3.3 VALORACION ECONOMICA AMBIENTAL: ALGUNOS PRESUPUESTOS ETICOS ... 66
3.4 LOS METODOS DE VALORACION ECONOMICA .. 70
A. Valoración objetiva ... 72
 3.5 METODO DE VALORACION CONTINGENTE ... 73
 3.6 METODO DE COSTO DE VIAJE .. 80
B. Valoración subjetiva ... 72
 COSTO DE VIAJE EN OMETEPE .. 81
 3.7 METODO DE PRECIOS HEDONICOS .. 86
• Método de Investigación ... 88
• Fuentes de Información ... 88
• Determinación del Universo .. 88
• Procesamiento de la Información ... 89
 3.5 ESQUEMAS DE PAGOS DE BIENES Y SERVICIOS AMBIENTALES 100
CAPITULO IV .. 102
EVALUACION DE IMPACTO AMBIENTAL EN ACTIVIDADES Y PROYECTOS
ECONOMICOS... 102
 4.1 CONCEPTOS: ... 103
 4.2 ORIGEN HISTORICO DE LA EVALUACION DE IMPACTO AMBIENTAL. .. 106
 4.3 LA GESTION AMBIENTAL EN NICARAGUA ... 107
 4.4 EL SISTEMA DE EVALUACIÓN DE IMPACTO AMBIENTAL.................. 108
 4.5 RELACION BENEFICIO COSTO AMBIENTALMENTE AJUSTADO 115
 4.6 ANALISIS DE GESTION DE RIESGOS EN PROYECTOS DE INVERSION
PUBLICA.. 119
 4.7 ESTUDIO DE CASO DE EIA .. 121
 FASE II INTERACCIÓN DE LAS ACTIVIDADES DEL PROYECTO Y LOS
COMPONENTES AMBIENTALES. .. 124
 FASE III EVALUACION DE IMPACTOS... 124
IDENTIFICACIÓN, EVALUACIÓN Y ANÁLISIS DE LOS IMPACTOS
AMBIENTALES ... 124
 MEDIDAS AMBIENTALES.. 135
 PLAN DE MONITOREO .. 139
CAPITULO I:
LA ECONOMIA AMBIENTAL COMO CIENCIA SOCIAL APLICADA.

Objetivo. Conocer el concepto, método y origen histórico de la Economía Ambiental.

Introducción

La Economía Ambiental o la Economía de los Recursos Naturales y el medio ambiente como también es conocida es una subdisciplina relativamente nueva (1960-70) y por lo tanto de recién inclusión en los planes de estudios, en la Facultad de Ciencias Económicas se introdujo en las carreras de Economía y Economía Agrícola, a partir en el plan de 1999 y en la transformación curricular del 2013 se amplió a dos asignaturas. Su objetivo es dar a conocer a los estudiantes las técnicas de Valoración económica de los bienes y servicios ambientales, que son necesarias para el reconocimiento del aporte económico del capital natural y la evaluación cualitativa y cuantitativa del impacto ambiental de las actividades económicas, en el 2015 se consideró replantear los programas de Economía Ambiental I y II con un enfoque de gestión integrada de riesgo y adaptación al cambio climático, como objetivo de la Universidad de convertir esta temática en un eje transversal en 12 materias del plan de estudio de la carrera de Economía Agrícola.

La Economía Ambiental se ha convertido en una herramienta para la realización de Evaluaciones de Impacto Ambiental que la Ley General del Medio Ambiente establece para ciertas actividades Económicas, además, a nivel nacional, regional, y mundial ha cobrado mucha relevancia, la aplicación de los métodos de valoración de los recursos naturales y el Ambiente para brindar insumos a los tomadores de decisión e incluir el tema en las agendas de desarrollo, por lo tanto todo economista tiene que por lo menos conocer como se aplican estas técnicas de valoración.

CONCEPTO DE ECONOMIA AMBIENTAL: La Economía Ambiental es una ciencia social aplicada, que trata de incorporar el equilibrio ambiental al análisis económico social del bienestar, mediante la valoración económica de los bienes y servicios ambientales que brinda los ecosistemas a la sociedad, resaltando el papel que ocupan estos en las funciones de utilidad del individuo y en las funciones de producción de los procesos económicos.

La Economía Ambiental es una subdisciplina que pretende aplicar conceptos y principios económicos a la gestión de los recursos naturales y problemas ambientales

1.1 Origen y Evolución de la Economía Ambiental

El desarrollo de la Economía Ambiental se sitúa en las décadas de 1960 -1970 paralela al nacimiento de los movimientos ambientalistas o ecologistas en los países más desarrollados. Sin embargo, los fundamentos de la Economía Ambiental pueden situarse temporalmente mucho más atrás, en lo siglos XVII y XVIII.

Aunque existen diversas escuelas de pensamiento y controversias metodológicas, el marco teórico sobre el que se desarrollan los modelos analíticos está claramente enroncanado con los principios de

1 Tomado de “Economía Ambiental”, Xavier Labandeira, Carmelo J. León, Ma. Xosé Vázquez Páginas 3 a la 13.
la Microeconomía y utiliza con menor profusión modelos macroeconómicos y relaciones estadísticas o modelos econométricos.

La premisa básica de esta nueva disciplina es que la economía es un sistema abierto y el sistema económico no puede operar sin la base de los sistemas ecológicos.

Hasta la aparición de la Economía Ambiental, la economía se ocupaba de los procesos de producción y consumo, de las relaciones entre ambos y del contexto en el que éstas tenían lugar: los mercados. Además, desde la Revolución Industrial, y especialmente desde el final de la II guerra mundial, el énfasis u objetivo de la planificación económica radica en el mantenimiento y estimulación del crecimiento económico. En este contexto, a partir de los años sesenta y, sobre todo, en las décadas posteriores, cuando las sociedades occidentales comienzan a mostrar determinadas preocupaciones e inquietudes de tipo ambiental.

En primer lugar, las sucesivas crisis de los precios del petróleo despiertan y alimentan la reflexión colectiva sobre el problema del agotamiento de los recursos, de forma más acuciante en el caso de los recursos energéticos no renovables. La aceleración deseada de la producción y el consumo en los países industrializados requería una demanda energética creciente y el modelo energético imperante basado en la combustión masiva de energía fósil no renovable, parecía imponer un límite inexorable al crecimiento económico.

En segundo lugar, comienzan a hacerse cada vez más patentes los efectos de la industrialización y del crecimiento económico incontrolados, a través del deterioro progresivo del paisaje o de graves episodios de contaminación del aire y del agua, con efectos sobre la salud humana y de otras especies. La calidad de vida comienza a sustituir al bienestar material como objetivo social prioritario y, al mismo tiempo, aparece cierta preocupación por el legado para las generaciones futuras o bienestar intergeneracional.

En tercer lugar, el crecimiento acelerado de la población en los países menos industrializados se traduce en una mayor presión sobre los recursos, lo que conlleva un agravamiento de los niveles de pobreza, pero también el riesgo de extinción de especies y la desaparición progresiva de recursos fundamentales para el equilibrio ecológico planetario, como por ejemplo las selvas o pulmones del planeta. Se trata en este caso, de la espiral poblacional –pobreza-deterioro ambiental, con efectos locales, regionales y globales, y que explican el surgimiento de la preocupación por la equidad en el bienestar intergeneracional. Se hace necesario planificar y colaborar en la consecución del nivel y el tipo de desarrollo adecuados para los países menos industrializados para así prevenir y solucionar problemas de tipo social, pero también ambientales.

Sin embargo, es en la década de 1970 cuando el pensamiento económico sobre el medio ambiente observa un desarrollo acelerado y una conformación plena como un marco conceptual diferenciado, precisamente cuando la preocupación por el uso inefficiente de los recursos naturales y ambientales adquiere un amplio carácter.
1.2 EVOLUCION DE LA FUNCION DE LOS RECURSOS AMBIENTALES EN EL PENSAMIENTO ECONOMICO2.

El primer debate en torno a los problemas ambientales en la economía tiene como ejes centrales la acumulación de recursos naturales y el problema de la población, de los cuales tanto la escuela mercantilista, como los fisiócratas y la escuela clásica se hacen eco. Así, Phillip Von Hornick escribió en 1684 que un buen mercantilista debía potenciar el crecimiento máximo de la población en un país, pues esto reforzaría a la nación. Los mercantilistas también estaban obsesionados con la acumulación de oro y plata, pues cuanto más tuviese un país más rico podía considerarse. La mayor contribución de esta escuela fue la abolición de las restricciones medievales y la creación de estados fuertes y unidos que sirviesen de instrumento para el crecimiento del comercio.

Los fisiócratas, representados por Quesnay y Turgot, constituyen la primera escuela del pensamiento que se fija en el valor que puede aportar la tierra al bienestar y al desarrollo de las sociedades, criticando la idea mercantilista de que el bienestar económico tiene su origen en la acumulación de metales preciosos para el comercio. El Tableau Economique de Quesnay de 1758 intentaba probar que el excedente económico estaba creado por la agricultura, y los granjeros suponían la clase social que satisfacía no solo sus necesidades sino también las de las otras clases y grupos sociales. Otro autor en esta lista fue Cantillon que es considerado el precursor de las ideas malthusianas sobre la población, al considerar que el aumento a la actividad económico elevaría el salario de subsistencia y la tasa de natalidad.

La evolución de las ideas económicas tiene su conformación clásica en la riqueza de las naciones de Adam Smith publicada en 1776. El descubrimiento aportado por esta obra fue la idea de que la búsqueda del interés individual, junto a la racionalización del trabajo y la expansión continuada del mercado, son los propulsores del crecimiento económico y de la mejora en el bienestar humano. Las ideas de Smith fueron abandonadas anteriormente por los filósofos David Hume, John Locke y John Law, que criticaban las políticas proteccionistas del índole mercantilista, citando el trabajo humano, y no los metales preciosos, como la fuente de riqueza principal, siendo Vicente de Gourney quien primero acuño la frase famosa “Laissez faire, laissez passer”. Estas ideas liberalas opuesta a la intención del estado en la economía perduran hasta nuestros días, y son la base sustentadora del enfoque de la negociación vía mercado para la resolución de los problemas ambientales, a partir de Coase (1960).

Adam Smith como primer exponente de la escuela clásica, estaba poco preocupado por los límites de los recursos naturales, o de la tierra para satisfacer las necesidades humanas debido a la percepción de que existía una gran cantidad de tierra aun no cultivada que podía servir para la sustentación de la población. Sin embargo, Smith notaba claramente que la expansión de la industria y el comercio reducirían el peso relativo de la agricultura en la economía. Aunque la minería, la metalurgia y la industria de equipo pesado no eran relevantes en la época, la riqueza de las naciones dedica en particular al sector extractivo, distinguiendo entre la renta generada por la agricultura y la renta de los depósitos minerales. El análisis, aplicado al carbón y a la lata, permitía distinguir diversas calidades de los productos y costes de extracción, y la posibilidad de sustitutivos cuyos precios, solo a partir de cierto límite, podían hacer rentable su extracción.

Como se ha mencionado, quizás una de las ideas que más influencia ha tenido en la conducción de gestión ambiental ha sido la del papel del sector público en la economía, que Smith rechuzo tan solo a las fuerzas armadas, el sistema judicial y algunas obras públicas de grandes dimensiones.

2 Tomado de “Economía Ambiental” Xavier Labanderia, Carmelo León, Ma. Xosé Vázquez Pág. 4
Esta idea daba una solución a la contradicción entre el interés privado y colectivo, dado que si a los individuos se les dejaba libertad para intercambiar y comerciar persiguiendo el beneficio individual, esto llevaría al beneficio colectivo, siempre que la competencia se mantuviese y se evitase la coalición y la conspiración. Problemas como el crecimiento de la población, la urbanización rápida y la pobreza no fueron considerados por Smith, pues no se percibían restricciones a la agricultura. A pesar de que esta idea tiene aún su arraigo en las corrientes actuales, Kula (1998) concluye que: existe una amplia evidencia de los problemas ambientales, como la lluvia acida, el efecto invernadero, el ozono estratosférico, la deforestación, la contaminación de la tierra y del agua, la erosión, y la acumulación de residuos tóxicos y nucleares se han agravado por la búsqueda prioritaria del interés individual sobre el colectivo, y que la doctrina de Laissez Faire nos llevaría a una catástrofe ambiental.

Es por ello, y así está reconocido en la Microeconomía actual, que la protección ambiental puede considerarse como la cuarta función de Smith añadiría al gobierno si hubiese vivido en una época como la presente.

Más diez años después de la publicación de la obra de Smith, en 1786, Joseph Townshend perfil las ideas del primer modelo ecológico del equilibrio natural que se sustrae a las ideas de estacionamiento preconizadas posteriormente por el reverendo Thomas Malthus. Townshend estaba preocupado por la Ley de Pobres, que primaba a las familias con muchos hijos. En su ejemplo, existía un ganado en una isla que iba creciendo a medida que se agotaban los pastos, con lo cual solo sobrevivían los individuos más fuertes. Se trata de un modelo darwiniano aplicado al agotamiento de los recursos, que según Edel (1973) fue usado por Malthus para construir un sistema en el que interactuaban la población humana, la economía y el medio natural.

Malthus fue uno de los primeros autores en darse cuenta de las limitaciones de los recursos naturales y trajo sus ideas pesimistas sobre el futuro de la humanidad en la obra Ensayo sobre el Principio de la Población, publicada en 1798. El autor notó que el aumento de la población estaba siendo acompañado de un aumento de la pobreza. Dado que la oferta de tierra es fija, y considerando la ley de los rendimientos decrecientes, el aumento del resto de los impuestos daría lugar a un aumento de alimentos cada vez menor. La conclusión es que mientras que la población crecía a una tasa geométrica debido a los irrefrenables deseos de reproducción o la “pasión entre los sexos, la cantidad de alimentos producida crecía aritméticamente. La apertura de nuevos territorios no conseguiría evitar esta tendencia al desfase entre las necesidades de energía alimenticia y la disponibilidad física dada por la cantidad y calidad de la tierra. Las limitaciones de alimentos ejercerían de freno, en última instancia, al crecimiento poblacional.

De acuerdo con Malthus, existen fuerzas que hacen que la población se reduzca, como el hambre, la guerra y las epidemias, así como fuerzas que motivan su crecimiento, como el subsidio de pobres, la mejora de la sanidad y la higiene. La consecuencia es que, si no ejerce un control de la población, esta podría crecer hasta cotas desorbitadas, como así se ha demostrado en el siglo XX. Y XXI. Las ideas malthusianas inspiraron a Darwin a elaborar una teoría evolutiva de la población, en la que los más capacitados desplazarian a los pobres e inadaptados. En palabras de Darwin (1859):

“Después de empezar mi investigación sistemática, leí por distracción las ideas de Malthus sobre la población, y estando yo bien preparado para apreciar la lucha por la existencia de todo el mundo a partir de mis observaciones de los hábitats de los animales y plantas, me sorprendí que, en estas circunstancias las variaciones favorables tendrían a preservarse, y las no favorables a destruir. El resultado de esto sería la formación de una nueva especie.”

La preocupación por las políticas de bienestar generosas con las clases menos favorecidas ha llevado a cuestionar la reflexión inicial de Darwin, como señala Hurxley (1959) al argumentar que este proceso de selección es justamente negativo, pues las facilidades a los pobres para su subsistencia incentivarán la sobrepoblación de grupos sociales poco preparados. El problema principal de las ideas malthusianas está en la no consideración del cambio técnico como inductor del aumento de la producción que satisfaciese las necesidades de alimentos, ni los programas de control de alimentación. Malthus fue rotundamente pesimista acerca de los límites impuestos por la capacidad de carga de la naturaleza: no veo la manera de que el hombre pueda escapar del peso
de esta ley que impregna toda la naturaleza animada. Ninguna igualdad, ninguna regulación agraria podría remover su presión incluso durante un siglo.

Esta visión pesimista motivada por la cantidad fija de recursos, y de tierra, fue compartida por David Ricardo, contemporáneo de Malthus, quien predijo el estado estacionario de equilibrio. Ricardo introdujo un modelo explicativo de cómo la actividad económica se relaciona con el medio ambiente, por el cual se justifica el hecho de que los propietarios recibirán una renta de la tierra cada vez menor. Al crecer la producción, la agricultura se extendería hasta tierras menos fértiles que requerirían más trabajo, con lo cual el precio de los alimentos tendría que subir para cubrir el coste de trabajo extra de trabajo de tierras menos fértiles. Como resultado de un crecimiento de la demanda mayor que la oferta, el precio tenderá a aumentar, con lo se cultivaran más intensamente las tierras de mayor productividad con el uso de fertilizantes y pesticidas, y se dejarán de cultivar las tierras marginales. Según Constanza (1997), este modelo:

“De cómo las actividades agrícolas se dibujan sobre la tierra en respuesta al crecimiento de la población y a los cambios en el precio de los alimentos es crítico para nuestro entendimiento sobre las relaciones entre la supervivencia humana y los sistemas ecológicos del mantenimiento de la vida.”

Por lo tanto, la razón del crecimiento de los precios se debía a la ley de los rendimientos decrecientes, y el precio del producto se determina por los beneficios, los salarios y la renta. El incremento de la renta a medida que se cultivan tierras de menor calidad tenderá a cero en el margen, dejando a los salarios y a los beneficios como los únicos determinantes de precio. En palabras de Sffa y Dobb (1951): cuando en el progreso de la sociedad, la tierra de segunda calidad en fertilidad se pone en cultivo, entonces surge la renta en la tierra de primera calidad, y la cantidad de esta renta depende de las diferencias de calidad entre estas dos tierras.

Como consecuencia de esta teoría, surgen implicaciones distributivas, pues los propietarios de tierras de mayor calidad tienen cada vez rentas más altas, y una parte mayor del producto va a parar a los propietarios. En este modelo existe una contradicción entre salarios y beneficios. Cuando los salarios crecen por encima del nivel de subsistencia, los beneficios se constriñen y la acumulación de capital puede cesar temporalmente. El crecimiento continuado de la población hará retornar los salarios, no obstante, a nivel de subsistencia. Esto hará crecer nuevamente los beneficios, incentivando la acumulación de más capital y el crecimiento; pero los rendimientos decrecientes llevarán a un estado estacionario en el que los beneficios no podrán aumentar más, no habrá acumulación de capital, ni crecimiento, y los salarios serán de subsistencia.

Las ideas pesimistas de Malthus y Ricardo fueron refutadas por Carey (1858), argumentando que los aumentos de eficiencia en la producción al adoptar técnicas cada vez menos costosas podrían evitar el pronunciamiento de los rendimientos de la agricultura; pero, sobre todo, que este fenómeno no se podía generalizar a otros sectores como, la minería o la producción forestal.

Por esta misma época surge la primera aportación a la formalización del problema de la optimización de la gestión de los recursos naturales, con la aplicación forestal que realiza Faustmann (1849) a partir de la cuestión del turno óptimo de la corta de los árboles de crecimiento lento, basado en la evolución de los ingresos esperados por la venta de la manera, la renta de la tierra y tipo de interés. De esta manera, se cuestiona por primera vez la posible divergencia entre el turno de máximo crecimiento o sostenible, y el turno económicamente óptimo. Samuelson (1976) resucitó las ideas de Faustmann sobre un análisis basado en rotaciones múltiples, superando la visión tradicional basada en una sola rotación.

Jonh Stuart Mill (1848) fue uno de los primeros economistas que se preocupó por la conservación de la biodiversidad y la imposibilidad desde el punto de vista del bienestar, de convertir todo el capital natural en capital producido por el hombre. En su opinión no tenía sentido un mundo en el que cada palmo de tierra se cultivase, cada árbol se arrancase y todas las especies fueran extinguidas. Por otra parte, también apuntó que el crecimiento de lo producido por la naturaleza no podía ser un proceso sin fin, y que así todo crecimiento debía de conducir a un equilibrio. El
crecimiento intenso solo podía tener lugar en las primeras etapas, en la que la humanidad luche por el avance material, sin embargo, estos ritmos de crecimientos no se podían considerar sostenibles por lo que se alcanzaría una economía de creación continua, donde la gente podría disfrutar de sus primeros ahorros que habían sido necesarios para la acumulación de capital.

En cuanto a la gestión de recursos naturales, Mill fue pionero en ideas que hoy forman parte de los modelos económicos más comunes, atribuyéndosele la aportación de las siguientes hipótesis; (Fisher 1981): i) los costes de extracción crecen a medida que se agota el recurso; ii) el incremento de los costes de extracción se amortiguara por el cambio técnico; y iii) el stock de tierra tiene valor no solo por lo que puede producir sino también por la belleza naturales de los paisajes y ecosistemas.

Las preocupaciones por la gestión de los recursos naturales tienen en Jevons uno de los máximos exponentes al disertar en 1865 sobre el problema del agotamiento del carbón, la fuente principal de la época, en el libro la cuestión del carbón: una investigación sobre el progreso de la nación y la pobreza extinción de las minas. El pesimismo sobre el agotamiento era manifiesto en la conclusión de que:

“debo enfatizar el doloroso hecho que el crecimiento hará el consumo de carbón comparable con la oferta total. Con la mayor profundad y dificultad de las minas llegaremos a esa inevitable frontera que impedirá nuestro progreso”.

Sin embargo, la contribución más importante de Jevons a la economía de los recursos naturales es el principio de equi-marginalidad, que preside todo problema de optimización o de maximacion de beneficios netos en la gestión del medio ambiente. De acuerdo a este principio microeconómico, el óptimo en la asignación de un bien entre usos alternativos se obtiene por la comparación, en igualdad, del valor marginal obtenido en cada uno de ellos.

En esta misma época, Marx sentó un nuevo paradigma en la relación a la visión de los recursos naturales al servicio de la humanidad, al cual se le suele atribuir probablemente la forma errónea los fracasos en la gestión del medio ambiente que hicieron las economías socialistas en el siglo XX (Pearce y Turner(1990)). En la obra El Capital, cuyo primer volumen se publicó en 1867, se encuentran algunas implicaciones para el uso de los recursos naturales desde un punto de vista de la lucha de clases. Marx formulo un modelo de producción de bienes y servicios caracterizados por una relación social de explotación en la que la clase capitalista roba a los trabajadores los beneficios de la tecnología y la producción, siendo estos remunerados solo lo suficiente para mantener el esfuerzo y las subsistencias q debido a la oferta creciente de trabajo no tienen más remedio que aceptar estas condiciones.

La teoría del valor del trabajo es un elemento fundamental del análisis marxista, distinguiendo entre el valor de uso y valor de cambio. El valor de uso se deriva de las cualidades y materiales de los bienes. El trabajo es el origen de este valor pero puede dar lugar a diferentes valores dependiendo de los recursos naturales incorporados. El valor de cambio se define por la cantidad de trabajo invertido, ponderando por la destreza y habilidades del trabajador. Según Perelman (1974), la contribución teórica más relevante de Marx susceptible de ser aplicada al análisis de los problemas ambientales, esta justamente en el descubrimiento del carácter dual del trabajo, esto es, que el trabajo tiene un valor de uso (su capacidad para producir) y un valor de cambio (salario). Los capitallistas extraen un excedente en el proceso de producción a partir de la diferencia entre estos dos valores. Con los recursos naturales, el coste de reproducción excede el coste de extracción, incluso si se considera a la renta como una parte de estos costes, con lo cual se desvirtúan los benéficos reales del uso de los recursos, creando un “excedente ficticios”.

En cuanto al agotamiento de los recursos naturales, Marx discrepaba de la visión derivada de la teoría de los rendimientos decrecientes de Ricardo y de la crisis poblacional aducida por Malthus, debido a la abundancia de los recursos, el progreso de la ciencia y la tecnología, las mejoras de las comunicaciones y los cambios institucionales. Las crisis del sistema estarían basadas en la extorción a la clase trabajadora, que provocaría una caída de la producción, reduciendo el valor del
excedente. El fenómeno del crecimiento poblacional sería paralelo al crecimiento de la ciencia. En palabras de Engels (1844):

“Dado que el aumento del conocimiento es al menos tan grande como la población, este aumenta en proporción al tamaño de la generación precedente debido a que avanza en proporción al conocimiento heredado, y en condiciones ordinarias también en progresión geométrica. ¿Y que es imposible en la ciencia?”

Ahora bien, los factores naturales, sobre todo cuando la tierra es utilizada de forma intensiva tienen también una contribución a la decrepitud del sistema, pues junto a la innovación tecnológica detraerán el excedente de la clase trabajadora. Marx también se preocupó por la explotación intensiva de la degradación de los recursos naturales y la emisión de residuos derivados de los procesos de producción, tanto de la agricultura como de la industria, así como por la destrucción de los bosques y a partir del desarrollo de la industria. En este sentido, Mayumi (2001) sostiene que Marx fue claramente influenciado por Leibig (1859), quien se refiere a los métodos agrícolas de la época en Europa como una explotación sistemática que contribuye a la degradación de la calidad de los suelos. En cierto modo, puede verse a Marx (1959) (1894) como un precursor del enfoque del balance de materiales al afirmar que:

“El modo capitalista de producción se extiende a la utilización de la excreta de la producción y el consumo. Las primeras se refieren a los residuos de la industria y de la agricultura, y las segundas son las excreta producidas por el intercambio natural de materia en el cuerpo humano, así como los cuerpos que permanecen después del consumo… Las excretas del consumo son muy importantes para la agricultura. Desde el punto de vista de su utilización hasta ahora, existe u desperdicio enorme de la economía capitalista. En Londres, por ejemplo, no se encuentra un mejor uso de excretas de cuatro millones y medio de seres humanos que contaminar el Támesis a un alto coste”.

Por tanto, la explotación del medio ambiente es una de las razones de la no sustentabilidad del sistema capitalista. El poder económico, la explotación y el proceso dialéctico que enfrenta a las dos clases sociales conducen a la explotación insostenible de la naturaleza, agravando a un más la situación de explotación y de reducción de la calidad de vida de la clase trabajadora. La identificación entre la explotación de trabajo y de la tierra por parte de la agricultura moderna es clara en Marx (1936) (1867).

“Todo progreso en la agricultura capitalista es un proceso en el arte, no solo de robar el trabajo, sino también de robar la tierra, todo el proceso debido al incremento de fertilidad del suelo es un progreso hacia las ruinas de las fuentes ultimas de la fertilidad. Cuando más se apoye al desarrollo de un país en la fundación de una industria moderna, como en Estados Unidos, por ejemplo, más rápido será este proceso de destrucción. De este modo, la producción capitalista desarrolla la tecnología y la combina junto a varios procesos sociales solo destruyendo las fuentes originales de riquezas – la tierra y el trabajo”

A la digresión Marxista se opone la concepción Neoclásica del estudio de los problemas económicos, cuyos principios han calado hondo en el paradigma dominante del análisis de los problemas ambientales. Los Neoclásicos suplantaron la teoría del valor basada en la oferta de una teoría basada en el concepto de utilidad marginal, resaltando la importancia de la demanda para determinar el valor de las cosas. El análisis marginal comenzó con Jevons quien formuló la teoría de la utilidad marginal decreciente como determinante del valor, mientras que Walras sostuvo que el conjunto de sistema económico está ligado a las decisiones del gasto del consumidor. Pero fue Marshall 1890 quien reconcilió el análisis clásico del valor determinado por la utilidad y la demanda.

El precio y el valor vienen explicados por la oferta y la demanda, cuya interacción permite la asignación de recursos escasos, y por ello, valiosos. La oferta recoge la tecnología y el progreso del conocimiento mientras que la demanda refleja las preferencias de los consumidores.

Por otra parte Marshall introdujo el concepto de economías externas para referirse a los beneficios que reciben a las unidades de producción del desarrollo industrial y que se realizan fuera del mercado y sin contra prestaciones monetarias sin embargo fue Pígou (1920) quien resaltó el
carácter posiblemente negativo de estas externalidades, utilizando el ejemplo de los pasos dañados por las cenizas de carbón emitidas por los ferrocarriles, y advirtiendo también de posibles efectos positivos y negativos sobre consumidores. Este concepto fue posteriormente desarrollado por Kapp (1950), Scitovsky (1954) Bator (1958), constituyéndose como un elemento que preside el análisis económico de los problemas ambientales y de sus posibles soluciones. Buchanan y Stubblebine (1962) argumentan que la presencia de efectos externos viola las condiciones para una asignación óptima de recursos en la economía. Sin embargo, el nivel óptimo de externalidad no es cero, dado que en la búsqueda de nivel óptimo intervienen los conceptos marshallianos de beneficios y costes marginales. Pero quizás la aportación más importante de Pigou fue su análisis de posibles soluciones para las correcciones de las externalidades, favoreciendo la idea que la economía libre de mercado no funciona bien en este contexto y existiría una mano para el gobierno interviniese con el objetivo de incrementar en bienestar. Una de las preocupaciones fundamentales era la forma irracional en la que se adoptaban las decisiones del uso intertemporal de los recursos, ponderando el presente más de lo que sería socialmente deseable, especialmente para los bienes ambientales.

El resultado es un daño a las generaciones futuras, que podría ser corregida mediante intervención pública que incentive al ahorro sobre el consumo presente. Pigou sugirió el uso de subsidios, impuestos y legislación como los tres instrumentos de política que serían útiles para conseguir un uso racional de los recursos agotables, la protección de la calidad ambiental, la contención del consumo desperdiciador y la promoción del ahorro.

Si bien Pigou puede considerarse el iniciador de política económica del medio ambiente, Hotelling fue sin duda el fundador de la microeconomía de los recursos naturales, sentando las bases fundamentales en su artículo de 1931 sobre la gestión económicamente óptima de los recursos agotables. En este artículo se establece la regla que preside todo análisis de la gestión de los recursos naturales, según la cual, para la extracción se justifica, el precio del recurso menos el coste de extracción debe de aumentar con el tipo de interés. Existe por tanto un Trade-Off entre los beneficios presentes y futuros que tiene que ser evaluado para determinar el sendero de extracción en un contexto dinámico. En este modelo se tiene dos costes, el coste marginal de extracción que surge de las operaciones del trabajo y el capital, y el coste marginal de uso precedente de los beneficios perdidos a medida que se pospone la extracción. Este último coste ha de ser igual al beneficio susceptible de ser obtenido en el margen por la decisión de extraer, que viene dado por el tipo de interés, para que la extracción esté justificada.

Más recientemente, Coase (1960) propone un nuevo paradigma en la gestión de los problemas ambientales poniendo el énfasis en la negociación vía mercado de las partes interesadas. Este planteamiento ha dado lugar a la escuela de los derechos de propiedad, que resalta la indefinición de estos derechos como causa elemental de los problemas ambientales. Dado que el mercado puede resolver por sí solo el problema de externalidades, no es necesaria la intervención atraves de legislación o incentivos. El teorema de Coase ha sido criticado por Buchanan el 1967 y Kneese 1971 y Lener 1971 entre otros, porque la negociación es menos probable que funcione si el número de afectados es muy grande, o cuando hay más de dos partes implicadas. Por otra parte, la negociación requiere un conocimiento perfecto de las funciones de beneficios y costes, lo cual es poco probable en situaciones de incertidumbre.

La gran explosión de la economía de los recursos naturales y el medio ambiente se produce en los años setenta del siglo XX, cuando las ideas precursora de Malthus, Pigou, Hotelling, y Coase son desarrolladas dentro del marco neoclásico, o puestas en cuestión por paradigmas alternativos por la economía ecológica. En esta época cuando surge una preocupación generalizada por el problema del agotamiento de los recursos, acompasada a la crisis del petróleo que provocaron síntomas de recesión mundial. La concentración de la economía en el desarrollo y el crecimiento se empezó a poner en cuestión a la luz de todos los efectos adversos observados en el medio ambiente y en la naturaleza, siendo el Club de Roma con el informe Meadows en 1972 quien trazó un tono neo-malthusiano. Anteriormente, en 1966, Boulding propuso la paradoja de nave espacial para el planeta tierra, según la cual la humanidad contaba con unos recursos limitados y finitos, y
La preocupación por las limitaciones impuestas por el medio ambiente al bienestar futuro de la humanidad se concreto en la instigación de numerosas investigaciones científicas y en la aparición de revistas académicas especializadas en el ámbito de la Economía Ambiental, como Journal of Environmental Economics and Management en 1974, y más tarde Ecological Economics y Environmental and Resources Economics. Las críticas a los conceptos y principios de la equimarginalidad para realizar los problemas ambientales dieron lugar a la aparición de la escuela de la economía Ecológica que intenta proponer nuevos métodos de análisis basados en la integración de la economía en las ciencias de la naturaleza. En cierto modo, los objetivos de este paradigma alternativos tienen algunas raíces comunes con la corriente más tradicional, pues según Constanza (1997):

“[…] el núcleo principal de los economistas ecológicos más importantes trabaja desde la premisa inicial de que la tierra tiene una capacidad limitada para el sustentamiento de la población y sus artefactos, determinado por la combinación de los limites de los recursos y el umbral ecológico.

Para que la economía siga funcionando de una forma sostenible dentro de los límites se necesita establecer políticas específicas medioambientales.”

Por otra parte:

“la economía ecológica es metodológicamente pluralista y acepta la estructura de análisis de la economía neoclásica y de otras estructuras. En efecto, el análisis del mercado neoclásico es todavía una importante pauta de pensamiento dentro de la economía ecológica”. Los puntos de diferenciación entre la economía política y el planteamiento neoclásico se encuentra en la prioridad dada al estudio de la equidad y a la distribución inicial de los derechos y recursos, tanto entre clase sociales intra e intergeneracional, como entre países y regiones, siguiendo en ocasiones el planteamiento marxista (Martínez-Allier y O’Conner (1996). Por parte, los economistas ecológicos tienen escasa confianza en la capacidad de la ciencia y la técnica para superar los problemas ambientales y las restricciones de los recursos ambientales. La visión optimista tiene su origen en la escuela clásica, fundamentalmente en Stuart Mill, predominando también en el pensamiento de Keynes. Según Constanza (1997):

“La economía Ecológica, como un nuevo agrupamiento de economistas y ecologistas preocupados, no está atada a las tradiciones históricas de la economía neoclásica. Usa la estructura de la economía neoclásica pero no se ve obligada a usar únicamente la estructura, y tampoco se siente obligada por el punto de vista mundial, las políticas, o las culturas como lo estaban los ecologistas del pasado”

Por otra parte, la visión interdisciplinar e integradora de la economía Ecológica en torno al conjunto de las interacciones de la sociedad humana con las sociedades naturales y los equilibrios ambientales, aspirando de este modo a un ámbito científico más ambicioso que la pura economía convencional, queda constatada por Martínez Allier (1999), uno de los grandes científicos españoles en esta área, cuando define esta rama de la ciencia en los siguientes términos:

“La economía Ecológica no recurre a una escala de valores única expresada en un solo numerario. Por el contrario, la economía Ecológica abarca la economía convencional neoclásica de los recursos y el medio ambiente y va más allá, al incorporar la evolución física de los impactos ambientales de la economía humana. Por lo tanto, la economía Ecológica no es una rama o subdisciplina de la economía, sino, más bien, otra manera de denominar a la ecología humana”

En cierto modo, los temas ambientales tuvieron su incorporación en los años sesenta en la economía como una crítica al énfasis desmesurado en el objetivo del crecimiento a toda costa y a los límites de la economía convencional para abordar los problemas que escapan al mercado. Este tono crítico es claramente enfatizado por los postulados de la economía ecológica, como señala Martínez Allier (1999):
“La economía Ecológica ofrece una crítica a la economía convencional y, además, aporta instrumentos propios para explicar y juzgar el impacto humano sobre el ambiente; la economía Ecológica considera temas intergeneracionales, pero también conflictos de distribución dentro de la actual generación. Desde mi perspectiva, la economía Ecológica es el estudio de la ecología humana, la cual necesariamente involucra a diferentes disciplinas”

Sin embargo, está marcada diferenciación de la economía Ecológica no es óbice para que desde el lado neoclásico se esté también abierto a la incorporación de nuevas metodologías que permitan abordar los problemas del presente y del futuro, como así lo revela una cuidada lectura de las publicaciones especializadas. De hecho, la distinción entre la economía Ecológica y economía Ambiental es cada vez más difusa, a medida que los autores utilizan herramientas de uno y otro lado para abordar problemas del mundo real, tal y como revela Kaufman (2001) en un capítulo dedicado a la definición de la economía ecológica incluido en el libro Frontiers of Environmental Economics, quien concluye:

“He tratado de argumentar que la economía ecológica está siendo absorbida por la corriente principal de la economía convencional. Para evitar destino, la economía ecológica debe hacer lo que la economía hace muy bien-proporcionar sugerencias de políticas a los que toman las decisiones. Para ganar este pulso, he descrito los criterios para una agenda de investigación productiva. Espero que los analistas encuentren estas sugerencias útiles. El éxito afectara a la supervivencia de millones de especies, incluida la nuestra”

En este sentido, Pearce (1998) pasa revista a las características que se atribuye a la economía ecológica para enfatizar su diferenciación de la economía más convencional dedicada a temas ambientales, como i) el énfasis en las interacciones entre la economía y la ecología, ii) la atención a la complejidad y a los límites, iii) la distinción entre sustentabilidad fuerte y débil, iv) el principio de precaución, y v) la capacidad de los ecosistemas para soportar estrés y shocks.

La conclusión es que la distinción entre ambas corrientes no está en estas características, las cuales han sido abordadas por la economía Ambiental, sino en el agrupamiento y combinación de estas y que en ambas frentes “el esfuerzo más importante está en demostrar que la conservación proporciona mayores valores económicos que los usos competitivos en el inevitable y duro mundo real de la elección económica”. En cuanto a la trayectoria de la economía a raíz del estudio de los problemas ambientales, la conclusión no puede ser más clarificadora:

“La economía, la ciencia deprimente como la llamo Thomas Carlyle, no es generalmente considerada como una amiga de la Tierra. El progreso económico destruye y modifica los ambientes naturales, y parece hacer de la calidad ambiental algo dispensable en la elevación de los niveles de vida. La imagen de la economía como la ciencia que legitima este proceso está fuera de moda y es falsa. Todos los economistas aceptarían que si el desarrollo y el medio ambiente tienen que ser intercambiados entre sí, dejaríamos caer los activos ambientales solo cuando nuestra decisión estuviese completamente informada acerca del valor económico y las funciones de estos activos. En otros casos, el medio ambiente y el desarrollo económico son objetivos complementarios: no están en conflictos”

Por otra parte, de acuerdo con Pearce el objeto de estudio de la Economía Ambiental e, en cierto modo, coincide con la Economía Ecológica:

“La economía Ambiental se centra en la interfase entre los sistemas ambientales-caracterizados por complejos vínculos físicos-y el funcionamiento de la economía”

En definitiva, a pesar de la controversia existentes entre los métodos de análisis y las posibles soluciones, en la actualidad la economía del Medio Ambiente y de los Recursos Naturales se encamina hacia una visión cada vez más sincrética e integradora de las diversas técnicas de análisis, guiada por la necesidad de aportar soluciones a los retos que presentan las interacciones entre el medio ambiente y la economía en un contexto de crecientes incertidumbre.
1.3 OBJETO Y METODO DE ESTUDIO

Su objeto de estudio es el aporte económico del capital natural, su reconocimiento y su valoración monetaria a través del sistema de mercado (real o hipotético), utilizando herramientas microeconómicas y valores objetivos y subjetivos. El objeto de análisis se centra en las complejas interacciones entre la economía y el medio ambiente natural, compuesto este último por todos los recursos disponibles en la tierra, tanto en el aire, como recursos para el servicio de las necesidades humanas. Siendo solo recientemente cuando se empieza a valorar el servicio que estos recursos ofrecen para el bienestar social.

Su método es el científico, y ha desarrollado una serie de metodologías para la valoración de beneficios y costos ambientales, para incorporar el análisis ambiental al tradicional de costo-efectividad, aplicando valoraciones directas e indirectas para lograr una aproximación del valor económico total de los diferentes recursos naturales.

1.4 RELACIÓN Y DIFERENCIA ENTRE LA ECONOMÍA AMBIENTAL - ECONOMÍA DEL BIENESTAR - Y ECONOMÍA ECOLÓGICA.

Economía Ambiental y Economía del bienestar

Los economistas han considerado las alteraciones ambientales como “externalidades” o fallas del mercado. Esto significa que el “ambiente” tiende a no ser usado en una forma óptima o sea no se hace el mejor uso de sus funciones. Desde el punto de vista del hombre, estas funciones consisten en la provisión de “bienes naturales” tales como un panorama hermoso, alimentos, agua, oxígeno, etc., la provisión de recursos naturales en forma de insumos que se usan para crear bienes económicos, y la provisión de un “resumidero” en el que se vierten los subproductos de la actividad económica, y la función más importante de todas el sostenimiento de todas las formas de vida.

Sin embargo el sistema de mercado no ha valorado de manera eficiente las primeras tres funciones lo que ha provocado insostenibilidad del capital natural que nos brinda la naturaleza, y el caso de la última función ni siquiera es tomada en cuenta por la economía tradicional.

Pero si nos concentramos en las primeras tres funciones del ambiente, vemos sin dificultad que la economía ambiental parece encajar limpiamente dentro del marco establecido de la economía del bienestar. Por lo que se refiere a la provisión de recursos naturales, que se extraen del ambiente y se envían al mercado para su consumo intermedio o final, satisfaciendo de esta forma necesidades del ser humano, por tanto muchos de estos bienes naturales forman parte esencial de la función de utilidad de un individuo. Al llegar al mercado la mayoría de estos recursos (aunque no todos) tienen un precio establecido.

La energía solar constituye un ejemplo de los recursos naturales que no se venden (por ahora) en el mercado. Además su precio sería cero si se enviara al mercado, a menos que fuese necesaria la construcción de instalaciones para desviar o almacenar tal energía (como ocurriría si optamos por utilizar energía para el calentamiento doméstico o industrial). En este contexto la “falla de mercado” se referirá a toda divergencia entre los precios de mercado de los recursos y los precios que tendrán que existir para alcanzar un estado óptimo. Por lo que se refiere al ambiente como proveedor de bienes finales y como proveedor de instalaciones receptoras de desperdicios, estas funciones no se realizan generalmente en el mercado. Pero su “precio sombra” (el precio que existiera si estas funciones se realizarán en forma óptima en el mercado) es claramente positivo porque el uso del ambiente en esta forma impide su uso con algún otro propósito. Si permitiéramos que las vías acuáticas se usen como tiradores de los efluentes municipales o
industriales, impedimos el uso de tales vías, para la pesca, el baño y la recreación, aunque hasta cierto punto pueden desarrollarse estas actividades al mismo tiempo. Si se cobrará un por el uso de estas funciones del ambiente, esperaríamos un patrón diferentes de usos y un uso total diferente, por comparar con una situación en la que no cobren precios. Así reside entonces una fuente básica de la falla del mercado, aunque podría parecer un poco extraña la terminología porque en efectos no existen mercados, porque muchos servicios ambientales se tratan como si fuesen gratuitos porque son considerados bienes comunes o propiedad de todos: no hay derechos de propiedad adscritos en forma individual.

En este contexto, las funciones y los servicios del ambiente se convierten en ejemplos de bienes que tienen precios que pueden ser o no ser óptimos o no los tienen porque no se venden en el mercado. En el último caso, es claro que el precio efectivo de cero no es óptimo. Esto nos permite de inmediato tratar los problemas ambientales como problemas de la determinación no óptima de los precios, y por ende como algo que encaja precisamente el tema de la Economía del bienestar que trata de evaluar lo que sería una configuración óptima de una economía en términos de precios y cantidades de productos e insumos.

Si queremos entender los argumentos que han expuesto los economistas acerca de los problemas ambientales, debemos entender los rudimentos de la economía del bienestar que son utilizados por la economía ambiental para corregir la formación eficiente de precios y la creación de mercados en los bienes y servicios ambientales que no lo tienen, tales herramientas son: El excedente del consumidor, las pruebas de compensación, el óptimo de Pareto y la justicia distributiva.

Podemos entonces concluir que tanto la Economía Ambiental como la Economía del bienestar tienen el mismo objetivo “maximizar el bienestar”, a través del uso eficiente y racional de los recursos, sin embargo se diferencia en que la Economía Ambiental trata de superar las fallas del mercado internalizando las externalidades ampliando el análisis de eficiencia del uso de los recursos no solo financieros, físicos y humanos sino también los naturales, mientras que la economía del bienestar se enfoca básicamente en los tres primeros lo que no ha permitido llegar al punto de maximización deseado por la sociedad.

ECONOMIA AMBIENTAL Y ECONOMIA ECOLOGICA.

La relación entre ambas disciplinas radica en que el objetivo de análisis es el mismo la búsqueda de la maximización del bienestar de los individuos que forman el colectivo de la sociedad, esto significa la satisfacción de sus necesidades económicas sociales en armonía con su entorno, de forma intergeneracional o sea las de las generaciones presentes y las de las generaciones futuras. Sin embargo la economía ambiental es más instrumental y cuantitativa, aporta elementos metodológicos para el cálculo del valor económico social de los bienes y servicios que nos brindan los ecosistemas, retoma instrumentos de la teoría económica para tal efecto, tales como las consideraciones de la teoría del bienestar, el sistema de mercado, la formación de precios y las preferencias y expectativas de los consumidores. (Tal como lo desarrollaremos en el capítulo siguiente)

La Economía Ecológica por el contrario es más analítica, aborda elementos teóricos más estructurales, y esta enfocada al análisis cualitativo del nuevo paradigma de desarrollo el Ecodesarrollo o Desarrollo Sostenible, sus desafíos y estrategias, propone cambios en la producción, el consumo y sobretodo en las aptitudes de los seres humanos y su relación con la naturaleza.
ENFOQUE ECONOMIA ECOLOGICA.

La economía ecológica es una rama de las ciencias sociales que abarca un campo transdisciplinario dirigido a las relaciones entre ecosistemas y sistemas económicos. Tiene una visión del mundo dinámica, sistemática y evolutiva, (sistema abierto de reproducción con límite), donde la preferencia humana, el entendimiento, la tecnología y la organización coevolucionan para reflejar amplias oportunidades ecológicas y sus limitaciones, además considera que los seres humanos son responsables de comprender el papel en el sistema más amplio y administrativo sostenible.

A un tiempo de escala a nivel micro y macro tomando la totalidad del ecosistema incluyendo en él la especie humana.

En otras palabras la economía ecológica es el estudio de, abastecimiento de bienes escasos regulados por un mercado atreves de un precio, pero incluyendo entre ellos los bienes de la naturaleza, o sea los que son producidos por el hombre, donde la fijación de precios de estos últimos tiene que ser la más adecuada de manera que su explotación debe ser racionada y permita la conservación de los mismos para las generaciones futuras, significa entonces expandir las fronteras del sistema económico cerrado por el método de la economía biofísica de una economía termodinámicamente abierta incrustada en el ecosistema.

DIFERENCIA CON LA ECONOMIA TRADICIONAL

La diferencia fundamental radica en que la economía tradicional tiene una visión básica del mundo, mecánica, estática y atomística, donde los gustos y preferencias individuales se consideran otorgados por las fuerzas dominantes. Considera la base de recursos esencialmente ilimitada debido al proceso técnico y a la infinita capacidad de ser sustituida, tomando en cuenta el tiempo a corto plazo, a un espacio local o internacional, dando énfasis únicamente a la especie humanas.

Por otro lado la economía ambiental tiene una naturaleza monetaria y consumista del proceso económico, considera únicamente la escasez de recursos en términos de valor económico eficiente, un proceso circular cerrado de reproducción: producción-consumo-acumulación. Teniendo como fin último el crecimiento para consumir más, bajo restricciones ambientales (contaminación optima, uso racional de los recursos naturales etc…).

Como se puede implementar:

La base de la economía ecológica es la sostenibilidad que puede implementarse en primer lugar planteándolas como objetivos institucional, social y académico, manteniendo el acervo natural y logrando una equidad con desarrollo, acrecentando el uso de instrumentos políticos ya sea a través del mercado o del estado, como regulaciones, multa, incentivos, etc. Desarrollar investigaciones orientadas a eco desarrollo y mejorar la educación en ese sentido.

Según Martínez Allier, en la teoría económica, los precios juegan el papel de señales para la asignación de recursos escasos a fines alternativos. Si incluimos entre estos la utilización que puedan hacer las generaciones futuras de los recursos agotables, las expectativas actuales al respecto a la evolución de la tecnología y a la demanda futura, tendrá una influencia importante en la formación de estos precios sin embargo esto no debe estar basado en supuestos controvertibles y estéticos. Si no también en principios morales, pero en la realidad la teoría económica no toma en cuenta estos principios morales si no que se dedica al estudio de la asignación de recursos resultantes de las transacciones entre individuos, tomando como dadas las preferencias de dichos individuos.

Cuando tratamos de los recursos agotables, el principio metodológico de que la asignación de recursos debe responder a las preferencias reveladas por los agentes económicos, entre en
dificultades metodológicas ya que muchos de los agentes económicos no han nacido y no pueden por tanto expresar su preferencia, por lo tanto la asignación inter generacional de recursos agotables proporciona un argumento en contra del individualismo metodológico de la teoría económica.

Otra forma de acercarnos a decisiones de políticas de economía ecológica es a través de una determinada tasa de redescuento del valor actual de la demanda futura para los diferentes proyectos de desarrollo que implica una actitud épica hacia las generaciones futuras, es así que un tasa de descuento llevara consigo un menor ritmo de agotamiento y por tanto, un futuro quizás más prospero.

Frederick Sowy critico fuertemente las opiniones de Keynes acerca del crecimiento a largo plazo (aunque no se oponía el balance tecnológico) basado en la inversión proveniente del ahorro, ya que definió la riqueza como un flujo que no podía ahorrarse, si no solo gastarse, y que la riqueza real provenía del flujo de la energía solar que era consumida en cuanto llegaba y no podía ser acumulada, es así que afirmaban que el avance de los conocimientos había mostrado, no obstante que si Adán fue un animal, el primer capitalista fue una planta, ya que las plantas acumulan energía, mientras los humanos solo la consumimos, centra su crítica en su capital de los economistas y empresarios que consideran que la riqueza gastada no es ahorrada, con una contra parte en forma de recibo que le da a su poseedor el derecho convencional de obtener un tanto por ciento por años sobre el monto de esa deuda. En otras palabras una alta tasa de pago por ahorro solo podría ser pagada si esta se convertía en inversiones de alto rendimiento financiero, alto crecimiento en la economía pero una tasa de destrucción de recursos no renovables.

Así que Soddy creía en una ciencia económica que no estudiaría la economía como algo regulado por el sistema de precio sino más bien un análisis de cómo proveer a la comunidad de los medios de vida que la ciencia moderna había hecho posible. Un primer paso hacia eso sería el limitar los derechos de los acreedores.

Otra alternativa planteada por Okun, que partir de la primicia de que la economía, de por si subyace una línea de tendencia a la prosperidad pudiéndose cuantificar el costo de la crisis comparando la producción actual con la tendencia.

Por otro lado Daly plantea que la economía ecológica debe ser una economía en estado estacionario donde el fin último es mantener el acervo de la requisa natural con fines de una distribución intra e inter generacional.

El enfoque de la economía ecológica se interesa por las dimensiones de la economía y sus interacciones con el ecosistema además de examinar los aspectos transgeneracionales. Señalan que todos los sistemas económicos son subsistemas comprendidos dentro del sistema biofísico que guarda una relación de interdependencia con la ecología. El ecosistema impone una limitación físicas a la expansión de todos los sistemas económicos. También considera a los sistemas de producción a los flujos abiertos como sistemas de producción, que no se pueden crear ni destruir, los insumos de la producción se deben tomar del ambiente, como estos no se pueden destruir regresan al ambiente en forma de calor disipado y residuos materiales que mediante el reciclaje pueden ser utilizados.

La economía ecológica toma en cuenta la escala física de la economía, reconoce que el bienestar de la humanidad es sensible al funcionamiento del ambiente. Si la economía sigue creciendo sin tomar en cuenta la escala y la disponibilidad de recursos se logra una situación de deterioro, por el que debemos de reconocer y preocuparnos del flujo abierto en que se desenvuelve la economía, de su escala y asignación optima.

Este enfoque se relaciona con el concepto de desarrollo sostenible, el cual en su forma más aceptada y difundida se refiere a velar por el desarrollo de las generaciones presentes en términos de la disponibilidad de recursos, sin comprometer el desarrollo de las futuras generaciones. En ese
sentido, se integran los aspectos relacionados con crecimiento económico, bienestar social y equilibrio ecológico, con lo cual se cumplen las dimensiones de la sostenibilidad.

Además, otro aspecto importante de la economía ecológica es su transdisciplinariedad, ya que toma elementos de otras ciencias como la física, química y biología, por lo que señala que en el sistema productivo, cada vez que usamos energía producimos inevitablemente desechos térmicos inutilizables. Cuando un proceso de energía provoca el calentamiento de una parte del ambiente, decimos que se genera contaminación térmica que puede tener graves consecuencias al ecosistema, ya que los procesos biológicos y los fenómenos climáticos los determina la temperatura.

DIFERENCIAS CONCEPTUALES ENTRE ECONOMIA CONVENCIONAL, ECOLOGIA CONVENCIONAL Y ECONOMIA ECOLOGICA

<table>
<thead>
<tr>
<th></th>
<th>Economía convencional</th>
<th>Ecología convencional</th>
<th>Economía ecológica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visión básica del mundo</td>
<td>Mecánica, estática, atomística. Gustos y preferencias individuales se consideran otorgadas por la fuerza dominante. La base de recursos considerada esencialmente ilimitada debido al progreso técnico y a la infinita capacidad de ser sustituida.</td>
<td>Evolutiva, atomística. La evolución que actúa a nivel genético es considerada como la fuerza dominante. La base de recursos es limitada. Los seres humanos son tan solo otra especie, pero son raramente estudiadas.</td>
<td>Dinámica, sistemas, evolutiva. Las preferencias humanas, el entendimiento, la tecnología y la organización co-evolucionan para reflejan amplias oportunidades ecológicas y sus limitaciones. Los seres humanos son responsables de comprender su papel en el sistema más amplio y administrativo sostenible.</td>
</tr>
<tr>
<td>Tiempo</td>
<td>Corto</td>
<td>Escalas múltiples</td>
<td>Escala múltiples</td>
</tr>
<tr>
<td>Espacio</td>
<td>Local internacional</td>
<td>Local o regional</td>
<td>Local o global</td>
</tr>
<tr>
<td>Especies</td>
<td>Humanas solamente</td>
<td>No/humanas solamente</td>
<td>Totalidad de ecosistemas/ incluye las humanas.</td>
</tr>
</tbody>
</table>
Mientras que la economía tradicional que corresponde al enfoque neoclásico, se refiere a la asignación óptima de los recursos que incluye el trabajo, capital y los recursos naturales, pero estos últimos no son vistos como componentes del ecosistema que sustenta a la producción y a los diferentes organismos de vida que habitamos en el planeta. En este enfoque el mercado es el centro del sistema y se limita a analizar la optimización bajo los principios paretianos. No le interesa la escala del ecosistema que es al mismo tiempo fuente de recursos naturales y soporte de las actividades productivas de la sociedad, es decir, no toma en cuenta la escala de la economía y la capacidad de carga que tiene el ecosistema para servir de sumidero de los desechos no reciclables que se generan.

La economía ambiental se considera una ampliación de la economía tradicional debido a su enfoque de mercado. Considera que el deterioro de los recursos naturales es una falla de mercado la cual se puede internalizar con la utilización de instrumentos de compensación económica, tiene como principio básico la expresión de términos monetarios de los recursos naturales y de externalidades, así mismo plantea la condición de definir claramente de los derechos de propiedad, pues en base en ellos es que se estimula a los agentes económicos para proteger el ambiente y internalizar los costos de la degradación que provoca la actividad productiva. Sin embargo carece de la visión fundamental que se refiere a la dependencia del hombre respecto a la naturaleza. Además, se basa en un enfoque antropocéntrico en el que todas las otras especies que habitan la tierra, son las que tienen que estar disponibles para la satisfacción de los requerimientos de los seres humanos. Tiene como supuesto que el progreso tecnológico conduce al hallazgo de los productos sustitutos de los recursos naturales, por lo tanto no se preocupa por las barreras que puedan imponer el entorno ambiental y la disponibilidad de los recursos naturales a la producción. Por ser considerada una extensión de la teoría económica neoclásica tampoco considera el concepto de equidad.

Es conveniente consultar a expertos en la materia ya que ellos pueden determinar los límites tolerables de extracción de determinado recurso y su ritmo de agotamiento. Con los instrumentos que le proporciona su especialidad, pueden fijar en conjunto los límites del umbral ecológico y los flujos de mantenimiento de la materia y la energía lo cual es útil para establecer a partir de qué nivel se estará traspasando esos umbrales en el que se empiezan a deteriorar los sistemas. También porque tienen en cuenta el grado de inter dependencia de las especies. Los expertos proporcionan la información necesaria para determinar la fragilidad de los ecosistemas con el fin de orientar la aplicación de políticas de uso para hacer un manejo adecuado de las especies, con el fin de permitir al hombre uso del potencial de crecimiento de los recursos disponibles.

Máximo de producción sustentable (MPS): Según Pearce y Tuner, tiene lugar como el ritmo de crecimiento de un recurso llega a un máximo, es la cantidad máxima que podemos extraer del recurso sobre una base sustentable, esto es, sin reducir la existencia a largo plazo. Si utilizamos el recurso renovable de tal modo que tenemos MPS de las existencia, esta se regeneran por sí solas y la próxima vez volver a tomar la MPS… y así sucesivamente. La idea de igualar nuestra tasa de extracción a la MPS tiene un atractivo: el recurso sobrevive “para siempre” y en cada periodo tenemos el máximo de él.

1.5 LA ALTERACION AMBIENTAL UNA CONSECUENCIA ANTROPOGENICA QUE DISMINUYE LOS NIVELES DE BIENESTAR DE LA SOCIEDAD.
DEFINICION DE LA ALTERACION AMBIENTAL

En la revisión de conceptos ecológicos, se ha mostrado que en los ecosistemas se llega a establecer un equilibrio dinámico entre los diversos componentes bióticos y abióticos del sistema.

Este equilibrio se manifiesta mediante cierta estabilidad en la composición de las poblaciones de los diferentes organismos, en especial lo más conspicuos, en la fisonomía y estructura del ecosistema, y en el mantenimiento del microclima y en las características del suelo. Todo se refleja, también, en un flujo más o menos estable de energía en el sistema y en cierta estabilidad de los ciclos biogequímicos. Esto no significa que tanto la fisonomía del ecosistema, como la tasa de flujo de energía y la de los ciclos biogequímicos (y, por ende, la productividad) muestran variaciones diurnas, así como anuales, según los ritmos propios de los organismos y las variaciones del ambiente físico (temperatura, humedad, luminosidad, etc.). Pero, dentro de ciertos límites, estas variaciones siguen un patrón relativamente constante para cada ecosistema.

Sin embargo, este equilibrio natural sufre a veces de violentas alteraciones en su patrón normal de variación, cuando las fuerzas de la naturaleza producen cambios repentinos en el ambiente físico. Por ejemplo, una erupción volcánica, un terremoto violento, un huracán o una inundación cambian, en poco tiempo, tanto la biota como las condiciones del suelo, lo que altera radicalmente la naturaleza del ecosistema. En ocasiones violentas, los cambios producidos por las fuerzas de la naturaleza no son tan violentos, como pueden ser un fuerte viento que derriba algunos árboles del bosque y se produce un claro o un año extremadamente seco, que cambie en cierto grado la composición de la biota. Muchas de estas pequeñas alteraciones naturales del ecosistema son remediadas, con relativa prontitud, mediante la acción de la sucesión ecológica. En algunos casos, como la formación de claros, que a veces se deben de la mera senectud de los árboles, su presencia es beneficiosa para el mantenimiento de muchos organismos.

En Nicaragua hay numerosos ejemplos de alteraciones naturales violentas, entre ellas se pueden citar: las erupciones volcánicas como la del Momotombo 1609, cuya violenta erupción hizo que los habitantes de la antigua ciudad colonial de León (León Viejo) desplazaran la ciudad lejos del pie del volcán. La nueva León fue reconstruida a unos 30 kilómetros hacia el Oeste, pero el Momotombo continuó siendo una amenaza para los poblados aledaños.

Siendo un país tan pequeño, nuestro historial de catástrofes naturales es sin embargo tremendo. Huracanes, terremotos, tsunamis y erupciones han pasado por Nicaragua dejando destrucción, pérdidas y tristeza.

A continuación describimos cuatro grandes desastres naturales ocurridos en nuestro país que han tenido un alto costo social, económico y ambiental.

3 Tomado de “Recursos Naturales”, Luis A. Fournier Origgi.
El 01 de Septiembre de 1992, a las 8 horas de la noche, una ola gigantesca destruyó grandes partes de la costa del Océano Pacífico de Nicaragua. La ola alcanzó entre 4 y 10 metros de altura y fue causada por un terremoto muy fuerte en el fondo del océano.

Murieron más de 170 personas, en la mayoría niños.

No hubo ningún preaviso aunque el terremoto había ocurrido 45 minutos antes de la llegada de la ola a la costa.

Todavía no existía la red sísmica de INETER, las únicas dos estaciones sísmicas existentes detectaron el terremoto. Pero nadie estuvo presente en INETER para procesar la información.

Tampoco existía un sistema de alerta. La vieja estación mareográfica en Corinto sobrevivió el impacto de lo ola y la registró.

LA ERUPCIÓN DEL VOLCÁN COSIGÜINA

La erupción más violenta en la historia reciente de Nicaragua fue el 22 de enero de 1835, protagonizada por el volcán Cosigüina. Una gran parte del cráter explotó y volaron trozos, los cuales formaron islotes en el Golfo de Fonseca. Las cenizas alcanzaron una distancia de hasta 1400 kilómetros, llegando hasta la Ciudad de México. Las cenizas podían bloquear la luz del sol en un radio de 150 kilómetros. Después de esta corta, pero brutal explosión, sólo pasaron unas
cuantas otras erupciones hasta que el volcán se volviera inactivo en 1859. En 1938 se formó una laguna en el hoyo cráterico que quedó después de la erupción.

EL HURACÁN MITCH

Era el año 1998, exactamente para el mes de octubre, el huracán Mitch se introdujo a costas del mar pacífico con vientos de hasta 290 kilómetros/h, mas las lluvias que no cesaban de caer, junto a esto se miraban las inundaciones, ríos desbordados y en su trayectoria hasta los puentes mas grandes arrancados por su fuerzas, en todo el territorio se vieron estos desastres mas en la zona de occidente de nuestro país,

El 30 de octubre, en Nicaragua, las lluvias provocaron el deslave (alud) de lodo del volcán llamado Casita, en el municipio de Posoltega, departamento de Chinandega, ahí muriendo más de 3000 personas.

Muchos cuerpos no fueron encontrados, hasta hoy viven sus cuerpos enterrados en ese desierto ya un lodo seco, el país se lleno de luto por la cantidad de muertos y las asociaciones humanitarias, gobierno, particulares buscaban como ayudar, y querían dar socorro a esas víctimas, hoy en día solo se ve en un lado de su cráter una gran cruz de tristeza, preguntas y soledad de lo que fue vivir ahí.
EL TERREMOTO DEL 1972

El terremoto de Managua de 1972 fue un sismo de magnitud 6.2 grados en la escala sismológica de Richter que destruyó la capital de Nicaragua, a las 12:35 de la mañana (06:35 UTC) del sábado 23 de diciembre de 1972 (en vísperas de la Navidad), con una duración de 30 segundos, seguido por dos réplicas de 5.0 y 5.2 grados a la 1:18 am y 1:20 am (07:18 y 07:20 UTC), respectivamente, casi una hora después del primer temblor, con epicentro dentro del Lago Xolotlán 2 kilómetros al noreste de la Planta Eléctrica Managua en la falla de Tiscapa.1 Destruyó el centro de la ciudad y causó cerca de 19,320 muertos y 20,000 heridos, aunque no se sabe el número exacto de fallecidos debido a que hubo cadáveres que nunca fueron sacados de los escombros por los rescatistas nacionales y extranjeros y que al descomponerse causaron un fuerte hedor durante casi 5 meses hasta la llegada de la estación lluviosa en mayo de 1973. Los incendios causados por el desastre se prolongaron durante las dos semanas siguientes hasta el 6 de enero de 1973, debido al quiebre de la tubería de agua potable y al desplome de los 2 cuarteles del Benemérito Cuerpo de Bomberos de Managua, situados en el barrio Candelaria y frente al Estadio Nacional, se derrumbaron aplastando a las unidades. Esto obligó a los cuerpos de bomberos de los departamentos de Carazo, Granada, León, Matagalpa y Masaya a ir a Managua para apagar el fuego; la energía eléctrica se fue en casi todo el país debido a que estaba centralizada en la capital en esa época. La destrucción fue comparada con la de las ciudades de Hiroshima y Nagasaki, Japón, después del estallido de las bombas atómicas, el 6 y el 9 de agosto de 1945, respectivamente, al final de la Segunda Guerra Mundial. De ahí resulta la importancia de una Gestión Integrada de Riesgos para la prevención de desastres que nos ayuda a minimizar los efectos causados por estos eventos naturales, sobre todo en territorios altamente vulnerables.

Gestión del Riesgo frente a los enfoques que históricamente han conducido los procesos de intervención en situaciones de desastre, es la explícita relación que la misma establece con el tema de desarrollo. En estos términos puede entenderse la Gestión del Riesgo como “… un parámetro y componente de la gestión del desarrollo, de la gestión del ambiente y la gestión global de la seguridad humana como condición imprescindible para el logro de la sostenibilidad”.(Lavell et al, 2003).

IMPORTANCIA DE LA GESTIÓN DEL RIESGO

- La búsqueda de la seguridad humana, ambiental y territorial a través de la gestión del riesgo, es un propósito que contribuye, entre otros aspectos, a reducir las condiciones de pobreza de un país y mejorar la gobernabilidad. Por tanto, disminuir la vulnerabilidad e incorporar el riesgo en la planificación sectorial y territorial, se convierte en un determinante del éxito de los objetivos planteados en todo Plan Nacional de Desarrollo.
Adicionalmente, para garantizar la sostenibilidad del desarrollo económico y social de un país resulta prioritaria la integración más efectiva del riesgo en las políticas, planes y proyectos y la ejecución de acciones orientadas a su conocimiento e intervención.

La gestión del riesgo significa la definición de Líneas de acción dirigidas a mejorar la acción del estado frente a la Gestión del Riesgo de Desastres, a través de actividades como Mejorar la capacidad técnica de las entidades territoriales y Regionales, así como formular políticas estratégicas tales como protección financiera ante desastres, manejo de desastres de baja y mediana intensidad y Mecanismos para orientar procesos de reconstrucción ante una situación declarada de desastre nacional, entre otras.

Mejorar el conocimiento del riesgo en el país: mediante acciones orientadas a:

- Ampliar las redes de monitoreo y alerta temprana y actualización de mapas de amenaza, fortalecer al estrategia de investigación aplicada a la GRD y diseñar instrumentos metodológicos para para la zonificación de las amenazas, la vulnerabilidad y el riesgo en el ámbito municipal.
- Implementar medidas de control y reducción del riesgo entre las cuales se encuentran incorporar criterios de gestión del riesgo en la formulación de proyectos de inversión pública nacional.

Así, pues, los ecosistemas naturales pueden sufrir cambios o alteraciones en su apariencia, composición, estructura y funcionamiento, por acción de elementos y factores de la naturaleza. Estas alteraciones han tenido lugar desde que se inició la formación de nuestro planeta, como lo atestiguan los estudios geológicos y paleontológicos, que muestran grandes cambios en las masas continentales, en la orogenia y en la evolución de la biota. Sin embargo, en la relativa corta existencia del hombre en la tierra, este se ha transformado en un fuerte rival de la naturaleza, como agente de alteración ambiental.

Por tal motivo, en este tema se discutirá con cierto detalle la alteración ambiental causada por el hombre, cuyos efectos son palpables en la actualidad en prácticamente todos los rincones de la tierra.

1.6 CARACTERIZACION DE CONTAMINACION AMBIENTAL Y SUS DIFERENTES MODALIDADES.4

Los ecosistemas naturales tienen una organización estructural y funcional que les permite mantener cierto nivel de estabilidad (dentro de las circunstancias normales) la diversidad de organismos en estos sistemas, el flujo de energía y diferentes sustancia y elementos que son necesarios para mantener esta estabilidad, se regulan de acuerdo al potencial del ambiente físico y a la disponibilidad de propágulos de organismos.

El proceso de alteración ambiental, por definición, tiende a variar esta organización estructural y funcional que presentan los ecosistemas naturales. Diversos factores y elementos, producto de la civilización y el desarrollo cultural del hombre, destruyen o alteran la estabilidad de los ecosistemas en la lucha constante del hombre para subsistir en la tierra. Pero, además de esta destrucción o modificación ambiental, el hombre moderno con su gran desarrollo científico y tecnológico ha agregado otra fuente más de alteración ambiental: La Contaminación.

La Contaminación Ambiental tiene lugar cuando la cantidad de elementos, sustancias o factores, que normalmente intervienen en el funcionamiento de un ecosistema, sufren variaciones notables cuantitativas, que producen alteraciones estructurales y funcionales en el sistema. También tiene lugar la contaminación cuando se introducen en el ecosistema otras sustancias o elementos que normalmente no forman parte de este. Así, aunque el fosforo es un elemento mineral presente en cualquier sistema, cuando la cantidad sobrepasa los niveles normales este elemento se transforma en un contaminante. El concepto de contaminación es un tanto relativo y depende fundamentalmente de la proporción entre los componentes de un ecosistema.

Por otra parte, es necesario notar que casi todos los factores de alteración ambiental que se discutieron anteriormente, están ligados al fenómeno de contaminación y, por lo general, su acción se manifiesta de manera conjunta. Desde hace dos décadas aproximadamente, se ha suscitado en Centroamérica y en el mundo un gran interés por los problemas de la contaminación del ambiente, lo que ha motivado la publicación de numerosos trabajos sobre el tema entre los que se encuentran (Bonilla, 1985-1986; Carazo, 1986; Chacón et al., 1990; Fournier, 1991; Fournier y Chavarría, 1989; Hartshom et al., 1982; Hilje, et al., 1987; Kormondy, 1989).

Madaty y Kormondy (1989) indican que el problema de la contaminación no es reciente, y que se remonta a la época del descubrimiento del fuego, aunque desde luego se ha incrementado con la revolución agrícola y la industrialización. Ya en el año 361 a.C. Teofrasto, considerado por algunos como el primer ambientalista, sugería que las sustancias fósiles, como el carbón, producían al quemarse olores desagradables y nocivos. En el año 65 a.C. el célebre poeta latino Horacio se lamentaba que los santuarios de Roma estaban ennegrecidos por el humo. Y en Inglaterra en 1273 se declaró reino. Y poco después, en 1306 un decreto real prohibía quema carbón el Londres, y cuando alguien desobedecía este mandato y se le encontraba culpable, podría llegar a ser decapitado. En 1666 un inglés solicitó al Rey que se eliminara de Londres los quemadores de carbonato de calcio y las fábricas de jabón, porque estaban contaminando la atmósfera. Pero casi tres siglos después de esta petición, en 1952, la neblina o bruma de Londres es la responsable por la muerte de más de 3000 personas por un aumento desmedido del óxido de azufre. Y este trágico incidente promovió en ese país una legislación sobre limpieza del aire, que a la fecha ha dado resultados positivos.

En el siguiente cuadro se presenta una visión general de la contaminación de acuerdo con su origen, naturaleza y parte del ambiente en que actúa. Ese cuadro permite ver la complejidad de elementos y factores que intervienen en el proceso de contaminación, lo que se refleja en los numerosos trabajos publicados sobre el tema en todo el mundo (Kormony, 1989).

Una buena síntesis de los casos más trágicos de problemas de contaminación ambiental que han afectado a la humanidad en diferentes partes del mundo en este siglo lo puede encontrar el lector en el trabajo de Madaty y Kormondy (1989).
CLASIFICACION GENERAL DE LOS CONTAMINANTES AMBIENTALES

<table>
<thead>
<tr>
<th>Fase de ambiente que afecta</th>
<th>Atmosfera</th>
<th>Agua</th>
<th>Suelo</th>
<th>Biota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origen</td>
<td>Industrial</td>
<td>Residencial</td>
<td>Actividades bélicas</td>
<td>vehículos</td>
</tr>
<tr>
<td>Naturaleza del contaminante</td>
<td>Física</td>
<td>Acústica</td>
<td>Visual</td>
<td>Térmica</td>
</tr>
<tr>
<td>Bilológica</td>
<td>Bacterias</td>
<td>Hongos</td>
<td>Protozoarios</td>
<td>Virus</td>
</tr>
</tbody>
</table>
El caso especial del DDT
El DDT (dicrolo-difenil-tricloroetano) es un insecticida de origen orgánico, tal vez el que se ha empleado en mayor escala en el mundo, después de la Segunda Guerra Mundial, hasta que diferentes países comenzaron a prohibir su uso, a mediados de la década pasada. El DDT se ha empleado para combatir diferentes parásitos del hombre, los animales y las plantas, con efectividad; de ahí que llegara a tener una gran popularidad en todo el mundo. Sin embargo, paulatinamente comenzaron a surgir serios inconvenientes con este producto. Entre otros se observó que no permanecía en un solo lugar, sino que se filtraba y fluía a las corrientes, lagos y océanos, donde seguía en las corrientes del viento del planeta, contaminando así sitios muy alejados del lugar donde se aplicaban. Otro problema que se presentaba es que en lugar desintegrarse en la fase del ambiente en que se aplicaba, debido a su vida media (4-16 años) se acumulaba en los componentes bióticos y abióticos del ecosistema, tanto acuáticos como terrestres, por muchos años. Se ha calculado que hay unos 450,000 toneladas de DDT y de sus derivados que circulan por el ambiente de la tierra. Además, debido a que el DDT es soluble en las grasas, se almacena en los tejidos de los seres vivos, se acumula en los animales por medio de las cadenas de alimentación y se concentra en los niveles tróficos superiores. Se ha observado que el DDT y sus derivados, tales como la dieldrina, se acumula en los mamíferos, incluyendo el hombre y pasan a través de la placenta de la madre al niño en desarrollo. Después de nacer, los infantes absorben de 0.1 a 0.2 ppm (partes por millón) de residuos de DDT provenientes de la madre al mamar. La literatura muestra muchos ejemplos de cómo el DDT ha afectado a numerosas especies de animales terrestres y acuáticos, en especial a los carnívoros, situados en la parte superior de sus respectivas pirámides de alimentación.

Este es, pues, un caso de un contaminante de naturaleza química, orgánica, que circula y su acumula en el suelo, el aire, el agua y en el cuerpo de diferentes organismos animales y vegetales, cuyo efecto negativo se origina en su uso como insecticida agropecuario, doméstico y aunque parezca paradójico en sanidad ambiental, por su gran efectividad en el combate de los insectos transmisores de la malaria y de otras enfermedades. Afortunadamente para el ambiente, los insecticidas de la familia del DDT han sido prácticamente prohibidos en todo la tierra, aunque todavía algunos lo emplean de manera supresticia.

A. Contaminantes Químicos.: Como se mostro en el cuadro de los contaminantes, existen dos grupos principales de contaminantes químicos: los orgánicos y los inorgánicos.

1.- Materiales Orgánicos:

Entre estos se incluyen proteínas, grasas, jabones, carbohidratos, resinas, hules, carbón, petróleo, alquitrán, colorantes, detergentes sintéticos y otros más.

Las proteínas aparecen en las aguas de drenaje doméstico, de las fábricas de productos lácteos, empaquetadoras de carne, rastros, curtiembres, y otras industrias de proceso de materiales biológicos.

El problema de con la proteínas es la demanda bioquímica y de oxígeno en las aguas, que llega a niveles muy altos, el desarrollo de organismos infecciosos y la producción de olores fuertes y desagradables.

Por su parte las grasas se presentan en las aguas de desecho de las casas y del restaurante así como en las afluentes de diversas industrias, tales como; procesadoras de lana, lavandería, fábrica de jabón y procesadoras de alimento.

Los jabones están presente en las aguas de desecho y el lodo que estas generan, en los desperdicios de las plantas textiles y de las lavanderías. Esos productos constituyen uno de los principales grupos de agentes humectantes y, por lo tanto, pueden causar serios trastornos en la capacidad de flotación y de aislamiento y del pelaje y del plumaje de los mamíferos semi-acuáticos y de las aves.
Entre los carbohidratos de incluyen los azucares simples así como los más completos (polisacáridos), y se encuentran presentes en todos los tipos de organismos. Estos compuestos se presentan en las aguas de desecho, en los desperdicios de las aguas textiles y de papel. Su principal efecto sobre la vida acuática es la demanda bioquímica de oxígeno y la coloración que imparten las aguas. Son abundantes en los desecho de beneficios de café y de azúcar.

Las resinas son, por lo general contaminantes producidos por las industrias de pinturas, recubrimientos asfálticos para pisos, papel y textiles.

El carbón se puede presentar en forma de partículas suspendidas en el agua o en la superficie de las plantas, y aun sobre los huevos de peces y anfibios. Al formar una especie de capa sobre estas superficies, interfiere seriamente con los crecimientos, la fotosíntesis y muchos de otros procesos biológicos. Esta sustancia se origina principalmente de los restos solidos que emanan de chimeneas y de la combustión de materiales orgánicos.

El petróleo y sus derivados pueden contaminar una extensión de agua que a veces puede cubrir varios kilómetros cuadrados en los casos más extremos. También puede producir algunos problemas en la tierra, principalmente cuando se producen accidentes en los oleoductos. Este tipo de contaminación se puede originar en barcos, refinerías, oleoductos, industrias metálicas, talleres mecánicos, y estaciones de vehículos automotores. Con situaciones muy particulares como la que tuvo lugar durante la reciente “Guerra del golfo pérsico” a principios del año 1991 en la que no solo se produjo una mancha de contaminación en el golfo de unos 200 km² en la mañana del 24 de enero de 1991, sino que posteriormente sentares de Emiratos de Kuwait se comenzaron a quemar por mano del hombre, afortuna mente una acción conjunta de numerosas organizaciones coordinadas por el programa de las naciones unidas han reducido ya, con bastante éxito parte de este serio problema ambiental (Anderson, 1991)

Estas sustancias son, por lo general, más livianas que el agua y el flotar sobre ella producen daños a los animales que usan la superficie. Los derrames de petróleo han causado graves problemas a las aves marinas. Por otra parte, los aceites son emulsificables en el agua y así pueden dañar a los diversos organismos que viven en ella o en el sustrato del fondo.

Mención especial merecen los alquitranes, que son materiales complejos que contienen hidrocarburos, fenoles y algunas otras sustancias toxicas. Debido a su naturaleza toxica, estas sustancias son muy peligrosas para diversas formas de vida, tanto acuática como terrestre.

Otro grupo de compuestos orgánicos que constituyen un serio problema de contaminación son los productos sintéticos que se usan en la industria, las actividades agropecuarias y en las residencias. Entre estos se puede citar: insecticidas, fungicidas, nematicidas, acaricidas, rodenticidas, herbicidas, detergente, colorante, etc. La naturaleza química de estas sustancias es muy diversas, así como su acción sobre los diversos tipos de organismos terrestres y acuáticos.

MATERIALES INORGÁNICOS.

Las sustancias inorgánicas incluyen compuestos como ácidos y álcalis, sales de metales pesados y sales soluble.

Los ácidos de tipo orgánico aparecen frecuentemente en los desperdicios de la mina, fábricas de productos químicos, acumuladores, hierro, cobre, y en las fábricas de pulpa para el papel. El daño causado por estos compuestos se debe principalmente a una reducción del pH del agua o a una acción fisiológica directa en los organismos.

Por su parte, los álcalis se originan principalmente en desperdicios de industrias químicas textiles y de cuero. Estas sustancias también alteran el pH del agua, lo hacen más alto y actúan directamente sobre la fisiología de los organismos.
El plomo, el zinc, el cobre y el níquel, entre otros son metales cuyas sales se utilizan en diversas industrias. Estos compuestos son tóxicos a muchos organismos y además tienen el serio problema de tener efecto acumulativo. El cobre y el plomo son observados ya, por tanto en los seres vivientes como en el suelo. El plomo también se encuentra como contaminante en los gases que expelen los escapes de los vehículos automotores, ya que la gasolina, por lo general contiene este elemento. Son embargo, en la actualidad se expanden en muchos países gasolina libre de plomo.

Las sales solubles como los bicarbonatos, sulfatos, cloruro, nitratos y fosfato de calcio, sodio, hierro, potasio, magnesio y manganeso son también, en algunos casos contaminantes de aguas y suelo. Estas sales se pueden encontrar en las aguas de fábricas de productos químicos, en los drenajes de las minas de sal y en los efluentes de ablandadores de agua. El agua salobre o salada, que resulta tanto en vegetales como animales

C. Contaminantes físicos.

Existen varios tipos de contaminantes físicos, que por lo general actúan en conjunto con algunos de los contaminantes químicos, por lo que su efecto sobre el ambiente y la biota se hace más crítico. También en casos como el del CO₂, que es un contaminante químico, cuyo exceso en ciertas fases del ambiente físico, como el aire, produce alteraciones de elementos físicos como la temperatura (este aspecto se considera con mayor detalle más adelante).

1. Calor

Existe una amplia gama de materiales que hacen variable color del agua. Algunas de estas coloraciones pueden ser de origen natural, como el color pardo o negruzco de los ríos que arrastran muchos materiales orgánicos en suspensión, como es el caso del Río Negro en América del Sur, o de los ríos Sucio y Toro Amarillo de Costa Rica. Pero la mayor parte de los contaminantes de color se originan en desperdicios industriales, que imparten el color directamente o al interactuar con otros contaminantes o con productos naturales que hay en el agua. La mayor parte de los contaminantes que producen alteraciones de color en el agua, son orgánicos, pero también hay algunos de naturaleza mineral. Este tipo de contaminantes son frecuentes como desechos de plantas industriales que emplean colorantes, como las fábricas textiles. El mayor efecto negativo de estos contaminantes es sobre el proceso de fotosíntesis en plantas acuáticas.

2. Turbidez.

La turbidez resulta principalmente por la suspensión en el agua de partículas de suelo arrastradas por la erosión o de desechos domésticos e industriales, principalmente de naturaleza coloidal. Estos materiales en suspensión pueden afectar los procesos de alimentación de diferentes animales acuáticos, debido a una reducción de la visibilidad. También sucede que las partículas en suspensión llegan a depositarse sobre las branquias de los peces, anfibios e invertebrados, y afectan así su filosofía. Por otra parte, al igual que la contaminación por calor, la turbidez produce una reducción en la penetración de la luz solar. Esto no solo afecta a la fotosíntesis por la variación en la luz misma, sino que también estos procesos y otros más del metabolismo animal y vegetal se alteran por los cambios en la temperatura. Las partículas se depositan también sobre las plantas acuáticas y, en casos extremos, como ha ocurrido en muchos lagos y mares, se llega a virtual eliminación de la flora acuática, lo que a su vez afecta todas las cadenas traficas de estos ecosistemas. Este fenómeno de turbidez se presenta, además de en el agua, en el aire, y las partículas en suspensión en el medio gaseoso pueden afectar, según su densidad, la visibilidad de los animales, la penetración de la luz, la temperatura, etc. Además, cuando estas partículas se depositan sobre las plantas terrestres, afectan seriamente diversos procesos fisiológicos de estos organismos.
3. Contaminación acústica.

El célebre político y militar francés, Napoleón Bonaparte, dijo en alguna oportunidad que la música es el menos molesto de los ruidos. Es indudable que se refería a la música tal como se conocía en aquella época, ya que su opinión hubiera sido muy diferente si asistiera a una de las modernas discotecas contemporáneas.

El ruido es uno de los contaminantes físicos más molestos en la actualidad, ya que no solo puede producir diferentes dolencias auditivas, sino que también afecta paulatinamente el equilibrio psicológico de los seres humanos.

Los físicos han desarrollado una unidad para medir la intensidad del sonido, que han llamado Bel, e honra Alexander Graham Bell. Esta unidad define un aumento en intensidad de 10 veces; así, si el sonido de una orquesta es 10 veces más intenso que el de una perforadora, es un Bel más intenso. El ovacione reacción es un millón de veces más intenso y, por consiguiente, 6 Bel más intenso. Se tiene entonces que:

La diferencia en intensidad
Entre dos sonidos X y Y En Bel = log intensidad sonora de X/ intensidad sonora de Y.

Como el Bel es una unidad muy grande, se ha dividido en demás, o decibeles, db, o sea, 1 Bel = 10 decibeles.

Con base en esta unidad se ha desarrollado una escala que permite catalogar la contaminación por ruido de acuerdo con la intensidad y daño que puede hacer al hombre.

En la figura 35 se presenta una muestra de esta escala. El límite de tolerancia para el oído humano es de unos 60db, y cuando los sonidos alcanzan intensidades superiores a los 80db se sufre algún tipo de daño acústico. Sin embargo, como afirma Chacón et al (1990) las consecuencias producidas por los ruidos no se limitan a los trastornos auditivos, sino que se extienden a órganos y funciones que nada tienen que ver con el oído. A esto hay que agregar también las perturbaciones psíquicas no menos graves que las fisiológicas, que suelen afectar a la totalidad del comportamiento de las personas que sufren de la “agresión acústica”. Se recomienda consultar la obra anteriormente citada para mayores detalles del efecto de la contaminación acústica sobre diferentes funciones vitales del hombre, tales como sistema respiratorio, sistema nervioso y aparato digestivo.

Es importante mencionar también que el comportamiento de los animales domésticos y de la fauna salvaje también sufre en cierto grado con la contaminación acústica, y que a veces ciertos comportamientos anormales de esos organismos se pueden deber, en buena parte, a este serio problema de la civilización moderna.

Otro factor que produce distorsiones en el intercambio natural de la energía térmica entre la superficie terrestre es el urbanismo, ya que las obras del hombre con sus formas, tamaños y colores muy diferentes ofrecen superficies de intercambio térmico muy diferentes a la naturaleza.

El agua también sufre contaminación térmica cuando esta se utiliza en los sistemas de enfriamiento de diversos tipos de industrias y de plantas generadoras de electricidad, por vapor o por energía nuclear. Esta fuente de contaminación térmica ha sido responsable de la eliminación o de la reducción en las poblaciones de numerosas especies de organismos acuáticos en ríos, lagos y mares. El calentamiento excesivo también puede favorecer el crecimiento de hongos y de plantas acuáticas nocivas.
1. 180: Motor de cohete.
2. 150: Avión jet en despegue.
3. 130: Música fuerte de rock gravada.
4. 120: Trueno. Pitoreta de un auto a 1m de distancia.
 - 110: Remachadora.
 - 100: Jet sobrevolando a 300m.
 - 90: Motocicleta 7.5m de distancia.
 - 80: Camión de diésel a 15m de distancia.
 - 70: Aspiradora.
 - 60: Conversación corriente.
 - 50: Ruido de tráfico ligero a 30m de distancia.
 - 40: Ruido en el dormitorio.
5. 30: Ruido en la biblioteca.
6. 20: Susurro.

Estudio en radio.

4. Espuma.

En las cascadas, orillas de los lagos y ríos de corrientes turbulentas, se observa con frecuencia la formación de espuma, por la simple incorporación del aire al agua. Sin embargo, este fenómeno se ha incrementado notablemente en los últimos 30 años, debido al uso de detergentes sintéticos. Hasta donde se sabe, la espuma no es en sí misma directamente nociva a la vida animal o vegetal, aunque a veces produce cierto efecto desagradable a la vista. Sin embargo, los detergentes sintéticos pueden causar la muerte de peces, aves y de plantas acuáticas.

5. Radioactividad.

Después de la segunda Guerra Mundial, se incrementó el uso de los isótopos radioactivos para investigaciones médicas, industriales y científicas, lo que ha planteado serios problemas en la eliminación de los desechos radiactivos. A esto deben agregarse los programas de investigación del uso de la energía nuclear con fines bélicos, que llevaron a cabo varias potencias mundiales y que tuvieron como consecuencia la formación de nubes de polvo radiactivos que circularon por diversos lugares de la tierra, e inclusive se dieron casos de que renos de la región ártica, al pastar en la tundra, ingerían forrajes con cierto grado de radioactividad, que luego se acumulaba en su carne y en la leche que era ingerida por los esquimales nativos de esas regiones. Afortunadamente, las pruebas nucleares de este tipo han sido suspendidas, con la
excepción de algunas relativamente recientes del gobierno de Francia. Otro factor de contaminación como se indicó anteriormente ya han producido varios accidentes serios.

D.- Contaminantes biológicos.

Los contaminantes biológicos se encuentran entre los más antiguos, ya que, desde que el hombre inicio el desarrollo de aldeas, tuvo problemas con la eliminación de sus desechos domésticos. En esta categoría de contaminantes se incluyen varios tipos de patógenos como bacterias, virus, protozoarios, parásitos y toxinas vegetales.

Las principales fuentes que originan de este tipo de contaminantes son las aguas de eliminación de desperdicios de industrias de alimentos o de productos biológicos, centros hospitalarios, aguas negras y de los drenajes de granjas de ganado porcino, aves y lecherías. Y, desde luego, también las aguas servidas de las zonas residenciales. Por ejemplo, el exceso de desechos orgánicos en os ríos o lagos puede favorecer el desarrollo de condiciones anaerobias, propicias para la proliferación de bacterias como Clostridium botulinum, uno de los agentes causales del botulismo, enfermedad sumamente mortal. A partir de 1991, también se ha presentado en el continente americano un serio brote de cólera, producido por la bacteria Vibrio Cholerae, ya que ha dejado una secuela de muerte desde que el brote comenzó en el Perú.

E.- Contaminación Fisiológica.

Se entiende por contaminación fisiológica la presencia de olores o sabores desagradables que impregnan los tejidos de las plantas de los animales que pueden servir de alimento para el hombre. También puede aplicarse agua de uso doméstico.

El origen de este tipo de contaminantes es variado, y puede deberse principalmente a la emanación natural de hidrocarburos, vetas de sal y a la presencia de ciertos microorganismos. Los desperdicios industriales (como los fenoles, sales, metales, detergentes, amoníaco, cloro y muchos más) pueden también impartir olores o sabores desagradables a los tejidos de los organismos vivientes.

Uno de los casos que se menciona con mayor frecuencia en la literatura, es el de los peces de ciertas regiones de los Estados Unidos de Norteamérica y del Mediterráneo, cuyo sabor desagradable los hace poco apetecibles al consumidor. Un producto muy sensible a adquirir olores es la leche, y a veces las vacas ingieren ciertas plantas que se pueden percibir en ella. En Costa Rica hay una planta trepadora leñosa, llamada "ajillo" que, cuando las vacas la ramonean, su aleche adquiere un olor semejante al ajo.

Algunos problemas de contaminación de ámbito natural.

Aunque el hombre ha tenido conciencia de la existencia de la contaminación desde hace ya miles de años, después de la Conferencia de Estocolmo, en 1972, el mundo comenzó a darse cuenta de que muchos años de problemas de contaminación no eran de carácter local, y ni aun regional, sino que afectaban a todo el planeta. Entre estos problemas se pueden citar el Calentamiento Global, la Destrucción de la Capa de Ozono y la Lluvia Acida. A estos hay que agregar el de la contaminación con sustancias radiactivas, que ya se ha mencionado con anterioridad.
1. El Calentamiento Global.

La absorción de los gases no se distribuye uniformemente sobre un intervalo amplio de longitudes de onda, sino que se concentra en bandas. Los gases producto de las diversas actividades humanas (principalmente bióxido de carbono, metano, clorofluoro-carbónico y oxido de nitrógeno) absorben en regiones del espectro donde el vapor de agua tiene una absorción débil; de ahí que su efecto es aquí importante (Fernández 1991).

Cada año se incorporan a la atmósfera grandes cantidades de bióxido de carbono, producto principalmente de la combustión del carbón y de derivados del petróleo. Simultáneamente, el hombre destruye al año miles de hectáreas de vegetación natural, de tal suerte que la combustión y la deforestación aumentan cada vez más el contenido de CO$_2$ de la atmósfera. Este aumento en el contenido del CO$_2$ altera el contenido normal de la atmósfera, lo que se refleja en un aumento en la temperatura en la superficie terrestre y en las capas de aires cercanos a ellas. Esto se debe fundamentalmente al efecto invernadero, ya que la capa de gases actúa como un techo de vidrio, que deja pasar los rayos solares, pero restringe la radiación calórica hacia el espacio. Según Fernández (1991) las emisiones de CO$_2$ crecieron a una razón de 4.3% por año desde 1860 a 1970 y a una razón de 2.8% de 1970 a 1979. El incremento en la concentración de CO$_2$ en la atmósfera se puede observar en la figura 36, que incluye observaciones llevadas a cabo de Mauna Lao, Hawái, de 1958 a 1988.

Un buen número de científicos consideran que este aumento sostenido del contenido de CO$_2$ atmosférico es el responsable de un incremento en la temperatura media anual en superficie de unos 0.5 °C, y que esto ha provocado una elevación del nivel medio del mar de unos 10 cm en los últimos 100 años. Aunque, también, como menciona Trefil (1991), hay también muchos que mantienen cierto escépticismo con respecto a que el CO$_2$ produzca este cambio global. Ese autor menciona que el planteo, a todos los científicos que conoce, la pregunta siguiente: ¿cuáles son las probabilidades de que el calentamiento del mundo llegue a dos grados centígrados en el próximo siglo? Las respuestas fluctuaron entre 25% y 75%, correspondiendo la probabilidad más alta a la respuesta de un individuo que se considera a sí mismo un escéptico. La opinión de Trefil quien es profesor de física en una universidad norteamericana, es que el calentamiento por efecto de invernadero podrá oscilar entre 0.5 y 1.7 grados centígrados.

Por su parte Jones y Wigley (1990), climatólogos australianos, indican que el análisis de registros continentales y marítimos confirman que nuestro planeta se ha calentado medio grado centígrado en los últimos cien años, pero que, a pesar de ello, las tendencias hacia el calentamiento futuro siguen siendo inciertos.

En otro trabajo reciente Kerr (1990) indica que en un informe aun no publicado de un grupo de científicos que analizaron el problema del calentamiento global se llegó a las siguientes conclusiones:
Calentamiento global puede llegar a ser suficientemente grande como para tener un efecto social significativo. Una duplicación de la concentración de CO2 de la época preindustrial aumentaría la temperatura promedio de la tierra entre 1.5 a 4.5 grados Celsius a mediados del próximo siglo, cifra que ha sido obtenida por diferentes científicos mediante simulaciones en ordenadores. El grupo se inclina por pensar que el calentamiento podría ser unos 2.5 grados Celsius. Si no se controla el efecto invernadero, por ahí del año 2030 el nivel de los mares subirá entre 8 y 29 cm y esto producirá un fuerte desencadenamiento de las regiones trigueras de los estados unidos de Norteamérica y de la antigua unión soviética, durante el verano.

Sin embargo, el grupo de expertos considera que todavía hay mucha incertidumbre, ya que el ámbito del calentamiento global varía de moderado a casi catastrófico.

Las causas del efecto invernadero aumenta aceleradamente día con día, y su acción se duplica durante los próximos 35 años, si esta se compara con lo que pudo haber sido en 1765.

El calentamiento en el pasado siglo real, y este ha oscilado entre 0.3 a 0.6 grados Celsius sin embargo, nos e sabe con certeza cuanto de este calentamiento se debe al efecto de invernadero.

Se requeriría por lo menos una década o más de observaciones para tener certeza del efecto de invernadero sobre el calentamiento global.

Algunos científicos consideran que el calentamiento puede ser más pronunciado en la región Ártica y como consecuencia de esto el gradiente térmico entre el ecuador y los polos será menor. Esto puede traer como consecuencia cambios en la circulación general de la atmósfera, con posibles reducciones en el flujo de aire húmedo de oeste a este del océano atlántico hacia los continentes.

Esto producirá, si ocurriera, alteraciones en la distribución de la precipitación mundial. También se mencionan cambios en las corrientes oceánicas, y en el movimiento de materiales de aguas profundas las superficies con estos cambios de temperatura. Esto afectará, desde luego, la productividad de los ecosistemas marinos, así como los cambios en la distribución de la lluvia afectarían los ecosistemas y agro ecosistemas terrestres.
2. La destrucción de la capa de ozono.

Desde hace ya varios años los científicos se han preocupado por un paulatino deterioro de la capa de ozono, envoltura que rodea el planeta entre 15 y 50km de altura y que protege a la tierra de los rayos ultravioleta, cuyo exceso podría aumentar la incidencia del cáncer de la piel, así como serios trastornos climatológicos y metabólicos en plantas, animales y otros organismos. El ozono es un gas compuesto por tres átomos de oxígeno que se afectan fuertemente con ciertos contaminantes atmosféricos, en particular los clorofluorocarbonos (CFC), muy empleados en aerosoles, en sistemas de refrigeración, aires acondicionados, solventes limpiadores de fábricas y en la industria de espuma plástica. Entre estos compuestos los más empleados son el gas freón (clorofluorometano), que es menos denso que el aire y se eleva hacia la estratosfera, donde se descompone por efecto de los rayos ultravioleta con una fuerte emisión de átomos de cloro, que inician una reacción en cadena que destruye miles de moléculas de ozono. El ozono no solo se afecta por la acción de los aerosoles, sino que sufre deterioro por efecto del vuelo de los aviones supersónicos, cuyos escapes emiten óxidos de nitrógeno que actúan sobre el ozono. También se ha sugerido que ciertos fertilizantes a base de nitrógeno liberan en su transformación en el suelo óxidos de nitrógeno que actúan sobre el ozono estratosférico; lo mismo se dice de las explosiones atómicas. Recientemente, algunos científicos afirman que el metano de la excreta del ganado bovino puede ser también otra causa que afecta la capa de ozono. El impacto mayor en el deterioro de la capa de ozono se presenta en la Antártida, donde los niveles del gas han declinado en forma constante de 325 unidades Dobson en 1995 a menos de 200 en 1990. Algunos afirman que ya este efecto se ha comenzado a sentir en países como Australia y Nueva Zelanda, que se encuentran más cercanos al Polo Sur. Entre estos efectos se menciona una disminución en la cosecha de trigo y de guisantes y un aumento en la incidencia del cáncer en la piel.

El Protocolo de Montreal, firmado por 46 naciones en 1987, intentó frenar la destrucción de la capa de ozono, por lo que se acordó que para el año 2000 cesara toda producción de Clorofluorocarbonos (CFC). Pero dicho acuerdo está amenazado incumplimiento por parte de los países industrializados, y por la falta del financiamiento que permita a las naciones en vías de desarrollo encontrar sustitutos a estos compuestos.
3.- La Lluvia Acida.

Otro problema de contaminación de carácter internacional es el de la Lluvia Acida, que es un complejo de diversos compuestos, producto, principalmente, de los gases de los escapes de los vehículos automotores, de industrias y de quemadores de combustibles fósiles.

Entre los gases que componen la lluvia acida se mencionan principalmente: ácido sulfhídrico, óxido de nitrógeno y varios compuestos orgánicos volátiles (tales, como tolueno, etileno, propileno, y varios compuestos de butano y de benzeno)

La lluvia acida tiene su mayor efecto en las regiones más industrializadas del mundo, como el centro y norte de Europa, los Estados Unidos de Norteamérica y el Canadá; pero la circulación de estos gases en la atmósfera terrestre alcanza a veces distancias y regiones insospechadas.

Algunos científicos escandinavos han observado una estrecha relación entre la lluvia acida caída en las colinas del sur de Noruega y la acidificación de centenares de lagos, con el resultado de la desaparición de peces. Lo mismo ha sido observado en lagos del Reino Unido.

Otro aspecto importante en relación con la lluvia acida es la extraña muerte de árboles en Europa Central. Al principio de la década de los años setenta, científicos alemanes observaron cambios notables en las características químicas de los suelos forestales de algunas regiones de aquel país y, con base en esto, predijeron que muchos árboles podrían morir, y esto sucedió precisamente al principio de la década siguiente. Se ha calculado que la lluvia acida ha reducido en un 16% el potencial de producción forestal de Europa, pero no hay todavía acuerdo en la forma en que esta actúa. Algunos consideran que el efecto es directo sobre el follaje, mientras que otros opinan que es indirecto por cambios en el suelo. Uno de los científicos alemanes que más ha investigado sobre el problema de la lluvia acida en los bosques, el Dr. Bernhardt Urich, de la Universidad de Gottinga, opina que en los suelos de Alemania el magnesio por lo general es un elemento deficitario y se ha tornado aún más escaso en los suelos forestales. Además, ha observado un aumento en los sulfatos y nitratos en esos suelos. Al inicio de sus estudios, Urich consideraba que estos cambios observados en la química de sus estudios, Urich consideraba que estos cambios observados en la química de los suelos forestales alemanes influían en una liberación significativa del aluminio y que los árboles absorbían cantidades excesivas de este elemento, que era la causa principal de amarillamiento súbito y caída de las hojas. Sin embargo, no logró probar esta hipótesis, y en la actualidad considera que es más bien la deficiencia de magnesio la que produce estos síntomas.

Por su parte, un investigador inglés, el Dr. Richard Skeffington, considera que la deficiencia de magnesio en los suelos alemanes y de otros países de Europa se puede deber, entre otras causas, a la cantidad extraída en los aprovechamientos forestales y a las sequías, tal como ocurrieron en el verano 1984 y 1985. Estas sequías pueden haber retardado el reciclaje del magnesio, y además afectado el crecimiento del sistema radicular de los árboles; así, los árboles tuvieron problemas de absorber el poco magnesio que había en el suelo. En 1985 la deficiencia clínicas fueron más favorables, y en apariencia que presentó una ligera mejoría en los bosques. Urich también ha estado de acuerdo en que los veranos secos pueden haber sido una de las causas de este complejo problema, y no solo el efecto de la lluvia acida.

En síntesis, la situación parece ser la siguiente en la “enfermedad” que ha afectado a los bosques alemanes. Hay una primera fase en la que el suelo, por muchas décadas, sufre cambios paulatinos en sus características químicas, que pasan casi desapercibidos. Luego, en una segunda etapa, la acidificación de los suelos por la lluvia acida afecta al sistema radicular de los árboles, que se hace muy superficial; finalmente, cualquier otro efecto adicional como enfermedades, sequías, heladas excesivas, etc., agudiza el problema del amarillamiento del follaje y su caída anormal. Todo esto afecta la nutrición mineral de las plantas y, por ende, la fotosíntesis, y con esto todo el metabolismo vegetal.
El problema de la lluvia acida, circunscrito a Europa y Norte de América, comienza a afectar ya a China, Brasil, Venezuela, África del Sur y Australia. También algunos investigadores han relacionado el problema de la lluvia acida con el efecto invernadero. Para mayores detalles sobre este interesante tema, que en el futuro podría tener importancia en el área centroamericana, se recomienda consultar a Pearce (1990).

1.7 EL CAMBIO CLIMÁTICO UN PROBLEMA ECONOMICO

Se llama cambio climático a la modificación del clima con respecto al historial climático a una escala global o regional. Tales cambios se producen a muy diversas escalas de tiempo y sobre todos los parámetros meteorológicos: temperatura, presión atmosférica, precipitaciones, nubosidad, etc. En teoría, son debidos tanto a causas naturales (Crowley y North, 1988) como antropogénicas (Oreskes, 2004).

La Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC) usa el término «cambio climático» solo para referirse al cambio por causas humanas:

Por "cambio climático" se entiende un cambio de clima atribuido directa o indirectamente a la actividad humana que altera la composición de la atmósfera mundial y que se suma a la variabilidad natural del clima observada durante periodos comparables.
CAUSAS HISTORICAS

El cambio climático es por tanto una alteración ambiental causada por la humanidad en contra de la misma humanidad, en la historia del desarrollo de la civilización es posible identificar una serie de etapas en que el hombre a logrado multiplicar su capacidad de producir alteraciones significativas en el ambiente:

I Etapa: Inicio de la Humanidad con el descubrimiento del fuego y la agricultura con sus rudimentarios implementos de madera y piedra y posteriormente de metal, trajeron como consecuencia un incremento relativo de la población, así como el desarrollo de la vida sedentaria con todos los cambios sociales que esta acarrea. Todo esto conllevó a los primeros intentos significativos del hombre por controlar su ambiente, así los ecosistemas naturales de lo que antes satisfacía su necesidades básicas, comienzan a ser reemplazados por ecosistemas urbanos y agro ecosistemas.

II Etapa: Los grandes descubrimientos geográficos: América, África y Asia lo que provoca un trasiego de especies que son sacadas de estos territorios y llevadas a Europa, y la introducción de otras en estos nuevos continentes por ejemplo en América el ganado vacuno y caballar inicia un proceso sostenido de alteración de los Ecosistemas Naturales. Las Explotaciones iracionales de oro y plata que exterminaron cantidad de población indígena, la construcción de navíos necesarios para estos viajes produjo una acelerada deforestación en algunos países de Europa. España e Inglaterra, al igual la necesidad de disponer de mayores cantidades de metal produjo alteraciones

5 Tomado de “Recursos Naturales” Luis A. Fournier Origgi. Pág. 169-174
en las regiones mineras de Europa, el disponer de armas de fuego en los procesos de colonización mundial causa terribles matanzas humanas y de animales salvajes, en especial en las grandes praderas de América del Norte y en las sabanas africanas. Y por último la introducción de plagas, enfermedades y malas hierbas en sitios en que estas no eran conocidas.

III Etapa: Industrialización y maquinismo:

El desarrollo científico y tecnológico de los siglos XVIII y XIX sentó las bases para el establecimiento de procesos administrativos y de producción muy diferentes a los que habían existido en el mundo por muchos siglos. La transformación de los talleres artesanales en plantas industriales, el descubrimiento de la máquina de vapor y posteriormente los motores de combustión dieron paso al inicio de procesos de contaminación del aire, el suelo y el agua.
IV Etapa: Desarrollo científico y tecnológico de los siglos XX y XXI

El desarrollo bélico con el afán de sojuzgar a otros pueblos, los avances de la industria química, en especial la síntesis orgánica que con base en el petróleo ha desarrollado una industria petroquímica de gran envergadura. La alimentación, el vestido, la vivienda, los medios de transporte, la comunicación y la industria farmacéutica son buenos ejemplos del gran impacto que la química ha tenido para la humanidad, pero a la par de todos estos beneficios, también ha producido serios problemas de contaminación.

Con el descubrimiento de la fisión del átomo, el hombre dispuso de fuerza capaz de destruir, en poco tiempo, una buena parte de la humanidad y un poder de alteración ambiental jamás imaginado, los efectos radiactivos después de lanzar la bomba atómica en Hiroshima y Nagasaki setenta años después todavía están latentes como heridas sangrantes en la humanidad.

La migración de la gente a las ciudades durante el siglo XX ha sido un proceso avasallador causado precisamente por las oportunidades que ofrecen las ciudades para conseguir empleo, obtener mayor ingreso y mejorar el bienestar material. Este proceso ha modificado sustancialmente la ocupación del territorio en los continentes, ha definido el patrón de acumulación de capital de las economías nacionales y también ha acelerado y ampliado el comercio internacional en todo el espacio global.

Se ha construido una economía basada en el uso del carbón y del petróleo. La economía moderna ha sido estructurada y dinamizada por el uso de este combustible para movilizar los medios de transporte, operar todo tipo de maquinaria y equipos, producir la petroquímica y generar la energía eléctrica que alumbran las ciudades, activa las industrias, facilita la comunicación y mejora el bienestar en los hogares.

Hoy en día, el automóvil es el símbolo de la modernidad y del progreso de una sociedad. Las ciudades se organizan y modelan para facilitar la circulación de estos vehículos, aunque el transporte público es el que presta el servicio de movilidad a la mayor parte de la población. Es por ello y por las otras razones antes mencionadas que el principal cooperador necesario del Cambio Climático somos la misma sociedad

Cambio en el uso de los suelos

Un cambio en el uso o manejo de las tierras por los humanos, que puede llevar a un cambio en la cubierta de dichos suelos. La cubierta de los suelos y el cambio en el uso de éstos puede tener un impacto en el albedo, la evapotranspiración, y las fuentes y los sumideros de gases de efecto invernadero, u otras propiedades del sistema climático. Puede tener igualmente un impacto en el clima, ya sea de manera local o mundial

En síntesis, los cambios se expresarán en:

- Fenómenos Intensos: Reducción de precipitaciones - sequía
- Fenómenos Extensivos: Incremento de las temperaturas - calor
- Mayor recurrencia e intensidad de fenómenos climáticos que pueden incrementar las pérdidas de vidas humanas y materiales
CONSECUENCIAS SOCIO ECONOMICAS DEL CAMBIO CLIMATICO

Al tratar el cambio climático como un problema económico causado por procesos productivos y de consumo incorrectos, tenemos que ampliar el análisis a las repercusiones en los niveles de bienestar de la sociedad afectados por las consecuencias sociales del cambio climático como son incremento de enfermedades, pérdida de ingreso y empleo por disminución de la productividad de los suelos, falta de acceso al agua en cantidad y calidad requerida para el consumo humano y para la producción de alimentos.

En términos netamente económicos podemos centrar las consecuencias del cambio climático en las afectaciones al Producto Interno Bruto mediante la disminución de la producción agrícola por sequías o inundaciones, aumento del gasto social por incremento de enfermedades por origen de mutaciones de virus, cáncer en la piel por la ruptura de la capa de ozono, enfermedades respiratorias por contaminación atmosférica, reconstrucción de vías públicas e instalaciones estatales y otros gastos asociados a atención social ante desastres naturales que aumentan su recurrencia por efectos del cambio climático.

La disminución de la producción agrícola también repercute en una disminución de materia prima para el sector industrial lo que contrae al sector secundario de la economía, y en relación a los servicios o sector terciario también se ven afectados al aumentar la probabilidad de inundación de sectores costeros donde se encuentra concentrada la actividad turística y el aumento de las dificultades de transporte al dañarse las vías de comunicación por efectos de huracanes, tornados o tormentas.

En síntesis toda la estructura socioeconómica de un país y a nivel del globo terráqueo se ve afectada por las consecuencias del cambio climático que ha avanzado tanto que ya es difícil revertirlo, por lo que los expertos recomiendan la mitigación de los efectos ya latentes, y la adaptación de los procesos productivos a estos cambios inminentes. Esto significa destinar recursos económicos a estos dos procesos, hacer conciencia en la sociedad de la responsabilidad intergeneracional que tenemos en la actualidad.
ANALISIS DE SOLUCIONES

El tema del cambio climático debe ser tratado como un eje transversal en todos los ámbitos académicos, productivos, sociales, financieros, gubernamentales, religiosos, etc., ya que es la sobrevivencia humana la que está en juego, no es un problema únicamente de los pobres, de los países menos desarrollados, de los sectores marginados, de los más débiles, en un problema de TODOS y por tanto todos tenemos que aportar al tratamiento de este fenómeno agravado por nuestras propias acciones.

La educación a todos los niveles es un pivote central para la mitigación y adaptación al cambio climático, ya que la inversión en educación trae como resultado cambio de actitud ante el consumo desenfrenado, cambios en la forma de producir, avances científicos técnicos para la adaptación de variedades resistentes al cambio climático y mitigar los efectos en la producción agrícola.

En términos económicos es muy importante los cálculos que nos permiten analizar la viabilidad de las inversiones, por ejemplo comparar ¿qué es más factible atender y enfrentar desastres o invertir en prevenir la ocurrencia del mismo?, cálculos que nos permitan por ejemplo analizar los aportes de los recursos naturales al PIB y las pérdidas por alteraciones en los procesos productivos causados por la agudización de fenómenos como el cambio climático.

La solución de mitigación y adaptación está en nuestras manos, tenemos que comenzar por nuestro propio comportamiento, hábitos, consumo, aptitud; Los gobiernos en alianza con la sociedad civil como garantes del bienestar social, tienen que promover medidas de mitigación masivas como jornadas de reforestación, concientización en el ahorro de agua y luz, campañas para la disminución del uso de aerosoles, para evitar quemadas de basura, promover el reciclaje, reutilización y la reducción de productos plásticos y de vidrios, capacitación a productores para la
disminución de practicas productivas no adecuadas como el modelo de tala – roza – quema, ganadería extensiva y uso de agroquímicos, medidas para el control de emisiones de gases como revisión de vehículos y normativas para el control de las emisiones industriales.

El rol de las Universidades es sustantivo como fuente de formación de profesionales y fuente del saber científico y técnico, la UNAN – Managua recientemente con la cooperación de COSUDE a iniciado un proceso de transversalización del tema de cambio climático en los pensum de algunas carreras como Economía Agrícola donde se partió de un diagnóstico del grado de conocimiento básico de los estudiantes de varios niveles de esa carrera, y a partir de ahí se estando adecuando los programas de 12 materias del pensum donde se incorpore de forma conceptual y aplicada el tema de cambio climático y Gestión Integral de riesgo.

El gobierno de Nicaragua en su PNDH contempla ejes fundamentales para la mitigación y adaptación al cambio climático y la atención y prevención de desastres tales como:

- Educación Ambiental para la Vida;
- Defensa y Protección Ambiental de los Recursos Naturales;
- Desarrollo Forestal;
- Conservación, Recuperación, Captación y Cosecha de Agua;
- Mitigación, Adaptación y Gestión de Riesgo ante el Cambio Climático, dentro de este eje se considera:
 - Que el cambio climático es de los mayores retos y desafíos de nuestro tiempo y representa una amenaza urgente e inmediata para las sociedades humanas y para la madre tierra.
 - Nicaragua cuenta con una Estrategia de mitigación y adaptación al cambio climático.
 - La adaptación al cambio climático consiste en crear las capacidades de resistir los impactos negativos en las poblaciones y en todos los ecosistemas terrestres y acuáticos.
 - La adaptación está íntimamente vinculada a un modelo de desarrollo sostenible que requiere por lo tanto fuertes inversiones públicas y privadas en infraestructuras que reduzcan la exposición de la población a vulnerabilidades.

Nicaragua, es el primer país del mundo en suscribir la Declaración Universal del Bien Común de la Tierra y de la Humanidad, como compromiso del Gobierno y del país de heredar a las futuras generaciones de nicaragüenses un ambiente saludable que permita el desarrollo humano sostenible, fortaleciendo los principios, prácticas, valores y capacidades con y en beneficio de la población nicaragüense mediante la Protección de la Madre Tierra, Adaptación ante el Cambio Climático y Gestión Integral de riesgos ante desastres en el modelo del Poder Ciudadano.

En relación a la gestión Integral del riesgo el PNDH impulsó entre 2007-2011 estudios que permitieron la identificación cualitativa y cuantitativa de las diferentes multi-amenasas, realizándose el mapeo de las mismas. Además, se han elaborado mapas de tsunami con un alto nivel de detalle para algunas zonas del Pacífico en donde se han instalado Sistemas de Alerta Temprana (SAT) ante tsunami (Municipios de San Rafael del Sur, Corinto y León). Se mejoró el monitoreo de fenómenos naturales, a través de la modernización y ampliación de la cobertura de las estaciones de vigilancia y monitoreo hidrometeorológico y geofísico.

Las principales líneas de acción para la gestión integral de riesgos en el período 2012-2016 son:

- Fortalecer las capacidades de los COBAPRED, a través de la implementación del programa “La familia y la comunidad unidas para salvar vidas”, que se desarrollará en los
153 municipios del país, a través de una cartilla de capacitación multi-amenazas dirigida a los líderes de los barrios vulnerables priorizados, equipamiento básico y la realización de ejercicios de simulación. En lo que va del año se han capacitado a 292 facilitadores.

- Doce municipios del país se verán fortalecidos con sus Planes de Gestión de Riesgo, que permitirán la creación de mayor capacidad de respuesta en los municipios beneficiados.
- Fortalecer las capacidades regionales, departamentales, municipales, distritales y locales para la incorporación de la Gestión Integral del Riesgo en la planificación territorial, con enfoque participativo.
- Construir una cultura de prevención en la población y en todos los sectores sociales e institucionales del país y fortalecer la capacidad local en las diferentes fases de la gestión integral del riesgo.
- Organizar, capacitar e instalar instrumentación de Sistema de Alerta Temprana (SAT), ante Tsunami en comunidades costeras en donde todavía no se cuente con este sistema.
- Organizar, capacitar e instalar instrumentación de Sistema de Alerta Temprana (SAT), ante Tsunami en comunidades costeras en donde todavía no se cuente con este sistema.
- Elevar la eficacia del Sistema Nacional para la Prevención, Mitigación y Atención de Desastres SINAPRED, con la formación de recursos humanos, obtención de recursos financieros, materiales y tecnológicos, que aseguren una administración eficiente de riesgos.

El Programa de Defensa y Protección del Medio Ambiente, Adaptación al Cambio Climático y Gestión del Riesgo, que establece una vinculación entre los sistemas tradicionales y los estatales con el fin de revitalizar y fortalecer el régimen comunitario y su equilibrio con el medio ambiente en la Costa Caribe.

A nivel mundial hay mucha expectativa con la conferencia global sobre cambio climático que se celebrará en diciembre en París donde se discutirán estrategias para la reducción de emisiones sobretodo en países industrializados donde los niveles de contaminación han sobrepasado los niveles permitidos.

Con mucho agrado he leído días atrás el anunció del gobierno de Obama sobre el “Plan de Energía Limpia” de EE.UU “ siendo este unos de los principales emisores de gases efecto invernadero el cual contempla que “ Estados Unidos reducirá para 2025 sus emisiones de efecto invernadero -en total, no solo las procedentes de centrales termoeléctricas- entre un 26 y un 28 por ciento respecto a los niveles de 2005” La norma complementa el objetivo general con el que EE.UU. se ha comprometido ante la ONU con miras a la conferencia en París.

Considero que uno de los principales avances en relación al tema es que el cambio climático es un tema de discusión y reflexión a nivel nacional, regional y mundial, en esferas académicas, políticas, económicas y incluso eclesiásticas tal como hemos podido leer la Encíclica Ambiental que recientemente público el Papa Francisco, con el título “Sobre el cuido de la casa común”, donde resalta el aporte y la reflexión de sus antecesores sobre el tema ambiental, al igual hace una ilustración de la discusión que desarrollan otras iglesias y comunidades cristianas sobre la importancia del mundo natural que Dios nos regaló.

Además en la encíclica hace referencia a San Francisco de Asís de quién tomo su nombre, quién fiel a la Escritura, nos propone reconocer la naturaleza como un espléndido libro en el cual Dios nos habla y nos refleja algo de su hermosura y de su bondad: “ A través de la grandeza y de la belleza de las criaturas, se conoce por analogía al autor” (Sb 13,5), y “ su eterna potencia y divinidad se hacen visibles para la inteligencia a través de sus obras desde la creación del mundo.”
Por tanto el papa Francisco nos hace un llamado urgente de proteger nuestra casa común incluyendo la preocupación de unir a toda la familia humana en la búsqueda de un desarrollo sostenible e integral, pues sabemos que las cosas pueden cambiar.

Algunos ejes que atraviesan toda la encíclica. Son: la íntima relación entre los pobres y la fragilidad del planeta, la convicción de que en el mundo todo está conectado, la crítica al nuevo paradigma y a las formas de poder que derivan de la tecnología, la invitación a buscar otros modos de entender la economía y el progreso, el valor propio de cada criatura, el sentido humano de la ecología, la necesidad de debates sinceros y honestos, la grave responsabilidad de la política internacional y local, la cultura del descarte y la propuesta de un nuevo estilo de vida. Estos temas no se cierran ni abandonan, sino que son constantemente replanteados y enriquecidos.
CAPITULO 2

LAS EXTERNALIDADES UN PROBLEMA ECONOMICO.

Objetivos: Identificar y aplicar las técnicas y herramientas teórico económicas que utiliza la Economía Ambiental para la valoración e internalización de externalidades

INTRODUCCION

Al introducir el tema de economía ambiental se debe considerar que los economistas han abordado el tema de degradación ambiental como un caso particular del fracaso del mercado, lo cual significa que el ambiente tiende a no ser usado en forma óptima (no se hace el mejor uso de sus funciones), lo cual se interpreta desde el punto de vista antropocéntrico como: panoramas hermosos, provisión de recursos naturales que se usan para crear bienes económicos y la provisión de un resumidero en el que pueden echarse los sub productos inevitables de la actividad económica.

Hay personas que consideran limitado el punto de vista económico y señalan otra función del ambiente: actúa como un sistema integrado y muy sensible en muchos sentidos, que provee los medios para el sostenimiento de todas las formas de vida.

La economía ambiental encaja dentro del marco establecido de la economía del bienestar, ya que refiere a la provisión de recursos naturales, tales recursos se extraen del ambiente y se envían al mercado para su consumo intermedio o final. La mayoría de los recursos naturales, aunque, no todos tienen precio de mercado (ejemplo de recursos naturales que no se venden: energía solar, agua marítima, etc.).

La economía ambiental trata de evaluar lo que sería una configuración óptima de una economía en términos de precios y cantidades de productos e insumos. Las actividades económicas están continuamente presionando los recursos ambientales y generando con ello contaminación del agua, suelo, aire impacto sobre ecosistema, sobrepoblación de recursos finitos, impactos ambientales globales, etc. Cuando esta presión sobre los recursos excede la capacidad propia de recuperación del medio ambiente se produce la degradación ambiental. La política ambiental pasa a ser la respuesta para revertir esta situación o para impedir que se llegue a ella. Los instrumentos de política son las herramientas que tiene el tomador de decisión para alterar los procesos sociales y que se puedan cumplir los con los objetivos de política.

Entre los instrumentos económicos de políticas encontramos que los derechos de propiedad y la creación de mercado juegan un papel muy importante para la regulación ambiental y el manejo de los recursos naturales. Lo que dice que los problemas ambientales son ocasionados en su mayoría por los derechos de propiedad mal definidos, lo que nos puede indicar que la privatización de estos derechos puede solucionar el problema por el que se están dando los incentivos necesarios para que los autores conserven los recursos naturales. Una vez definidos los derechos de propiedad se pueden crear regulaciones para definir los derechos de uso de los recursos, entre las podemos citar:

- **Licencias:** estas consisten en autorizar a la firma para que operen. Con esta autorización se puede exigir que cumplan con un estándar ambiental para disminuir la cantidad de desechos que pueden depositar en el ambiente. Este instrumento de política tiene una ventaja de conocer previamente a los agentes participantes, facilitando con ello su fiscalización.
Derechos de uso o concesiones: al igual que las licencias, estos derechos son instrumentos para regular el uso del recurso, estos son facilitados por los que tienen los derechos de propiedad para facilitar la fiscalización de la extracción de recursos.

En el caso de las cuotas o derechos de propiedad transferibles estas son mecanismos de mercado para transar permisos de contaminación o de captura. Para ello se define la meta a lograr por los agentes participantes del mercado, y de acuerdo a ello se asignan permisos transables.

Cuotas o derechos transferibles: se asignan permisos o derechos para emitir o descargar contaminantes. Estos permisos se pueden transar en el mercado.

Estos instrumentos de regulación directa tienen como propósito reducir el daño ambiental para tener un manejo sostenible de los recursos naturales. Con la creación de estos instrumentos se pretende utilizar el recurso necesario sin poner en peligro a las especies.

La idea de los subsidios es pagar a aquellas empresas que contaminen por debajo de un nivel previamente establecido y fomentar la utilización de tecnología o evitar la sobre explotación de los recursos. De acuerdo a O’Ryan y Ulloa los impuestos y los subsidios son conceptualmente idénticos, pero hay una diferencia de eficiencia dinámica importante: en el largo plazo los subsidios pueden inducir la entrada de nuevos contaminantes o que exploten el recurso natural, lo cual puede resultar en un aumento de emisiones totales o una sobre explotación de un recurso. La aplicación del subsidio recae sobre el contribuyente, violando el principio del que contamina paga.

El eco-etiquetado, de acuerdo a Segura y Alfaro, es un tipo de certificación que se utiliza en el comercio internacional. Se considera que tiene un potencial como alternativa a las regulaciones del gobierno, que tiene como finalidad el aprovechamiento sostenible de los recursos como los bosques y los peces. Podría llegar a ser un mecanismo de control de calidad de las operaciones forestales a nivel nacional, si se llegara a difundir como condición necesaria en la explotación forestal y pesquera.

Los dos instrumentos mencionados se podrían considerar como formas de internalizar externalidades pero el eco-etiquetado se realiza de forma voluntaria, el productor decide si quiere satisfacer las demandas del consumidor el cual está exigiendo que los productos cuenten con la garantía de que no están contribuyendo a destruir el planeta y alterar los servicios ambientales que proveen estos recursos, en el caso de los subsidios estos programas son impulsados por el gobierno para tomar medidas en cuanto al manejo de los recursos naturales.

Estos mecanismos divergen en el largo plazo, por el hecho de que los subsidios pueden convertirse en controles perversos para la naturaleza ya que incentivan la entrada de nuevas firmas al mercado, lo cual conllevaría la degradación de los recursos naturales. En el caso del eco-etiquetado este tendría un comportamiento diferente en el largo plazo ya que los productores obtendrían más beneficios si producen de una forma que sea amigable con el ambiente por que el mercado así lo está exigiendo y esto incrementaría el número de personas o empresas que quieran proteger los recursos naturales.

Las fallas de mercado que degrada el medio ambiente surgen por mala administración y el uso ineficaz de los recursos naturales. Estas se pueden atribuir al mal funcionamiento de los mercados, al hecho de que estén distorsionados o son del todo inexistentes. También porque los precios generados por esos mercados trasmiten información desorientadora acerca de la escases de los recursos y no brindan incentivos adecuados para la administración, el uso eficaz de los recursos naturales. El gobierno aspira a corregir o por lo menos a mitigar las fallas de mercado por medio de impuestos, reglamentos, incentivos privados, proyectos públicos, administración de la macroeconomía y reforma de las instituciones. Pero el estado también tiene fallas de políticas las cuales se pueden dar cuando el no interviene y es necesario, así como cuando interviene y esto no es lo mas benéfico para la sociedad.
Entre las fallas de mercado podemos citar:

- Derechos de propiedad definidos o no existentes, los cuales se consideran requisitos indispensables para el uso de los recursos, ya quien no tenga seguridad de la propiedad de los recursos y de que esta sea válida no se preocupara por la degradación del ambiente.
- Recurso sin precio y mercados inexistentes o precarios, no hay un mercado para los recursos de acceso abierto, y por lo tanto tampoco existe un precio, pues no hay un propietario seguro y exclusivo que pueda exigir tal precio y negar el acceso al bien si no se efectúa el pago
- Bienes puros, estos se caracterizan por generar externalidades cuya internalización es muy costosa porque se proveen en cantidades fijas, ya que se pagan por medio de impuestos independientemente de la cantidad que se consume. Por lo que no deben ser provistos por el mercado sino que por el estado y financiado por los impuestos que se recaudan
- La miopía esto significa que se deben ampliar los horizontes de tiempo y las tasas de descuento para contar con beneficios más sostenibles en largo plazo.
- La existencia de externalidades. **Consiste en el efecto que los actos de una firma o individuos producen en otras firmas o individuos que no han tomado parte en tales acciones. Pueden ser positivas o negativas, según el efecto que causan en los niveles de bienestar de la sociedad por ejemplo la contaminación en cualquiera de sus expresiones: agua, suelo, atmosférica, etc es una externalidad negativa que está disminuyendo los niveles de bienestar al causar efectos negativos en la salud, producción entre otros, y esta externalidad negativa la está produciendo algún agente económico a través de un acto de producción o de consumo, y esta trasladando sus efectos a terceros, esto es parte de lo quiere corregir la Economía Ambiental. Por otro lado una externalidad positiva se traduce en un beneficio que brinda el Ecosistema que no está siendo reconocido por el sistema económico y la sociedad por ejemplo la belleza escénica.**

Las fallas del estado se pueden clasificar en tres tipos:

- Fallas en materia de proyecto solo toman en cuenta la base financiera y no consideran las externalidades
- Fallas en política sectoriales, son las que no toman en cuenta los vínculos entre los diversos sectores de la economía
- Fallas en las políticas macroeconómicas y de ajuste estructural, son las que tienen efecto negativo en la economía cuando se carece de una base microeconómica que pueda soportar la aplicación de estas políticas.

2.1 ECONOMÍA DEL MEDIO AMBIENTE

En 1739 tomo posesión de su cargo Anders Berch como el primer catedrático en economía en Suecia (4to en el mundo). La cátedra fue una proporción de la facultad de derecho, pero la enseñanza estaba orientada preferentemente a la aplicación práctica, el manejo de las laderas y la manufactura. Carl Von Linne demostró su inconformidad y en él año 1759 la nominación de una cátedra competitiva con más orientación a la agricultura. Este conflicto es muy significativo tomando en consideración la visión que se le daba a la economía en esta época: según Linne esta materia pertenecía y era para el uso doméstico más relacionada con la agricultura y la botánica que con la manufactura y el derecho.

Durante el periodo de los economistas clásicos era la agricultura, sin duda, la mayor fuente de riqueza tanto para el país como para el productor. La economía era conocida como la ciencia lúgubre que permanentemente pronosticaba que el ser humano estaba condenado a vivir bajo la norma de existencia mínima. Ha sido usual mofarse en alguna medida de Malthus, quien sostuvo
que el crecimiento de la población está limitado por la disponibilidad de alimentos. Esto ha pasado diariamente desapercibido en las décadas de los 60 y 70. Pero gran parte de la población vive realmente cerca del límite de inanición.

Durante la industrialización nosotros en el occidente hemos llegado a ser independientes de este sector y la agricultura en muchos países de occidente aporta a penas el 1% del PIB. ¿Qué papel juega el uno por ciento? Durante el periodo del optimismo brillante del crecimiento de los tecnócratas la mayoría de los economistas se ocupó en una forma marginal de la agricultura y los recursos naturales. La crisis que ha afectado durante estos últimos años las materias primas, la agricultura y el galopante crecimiento de los problemas del medio ambiente tanto a nivel local como global han inducido el cambio de este pensamiento. La expansión del mundo occidental se ha basado en que permanentemente hemos descubierto nuevas fronteras (frontiers), o sea nuevas fuentes no desarrolladas de las cuales hemos podido extraer materia prima y productos alimenticios. La economía global ha crecido y podemos decir que ahora domina gran parte de nuestras conductas. Según los cálculos los individuos consumen directa o indirectamente más del 50% de la energía obtenida en el mundo por la fotosíntesis. Permanentemente tropezamos con nuevas restricciones, ya sea el acceso a las materias primas a bajo costo o preferentemente el problema originado por el manejo de la basura o desperdicios producidos. Esto ha originado en el occidente el florecimiento de la economía de los recursos naturales y el medio ambiente. En los países pobres quizás esta materia es nueva y se orienta más hacia la agricultura y los recursos naturales en general. En países en vías de desarrollo la relevancia que se ha dado a esta materia es en relación a la agricultura y de impedir la sobre explotación de algunos recursos.

La economía siempre se ha definido como la enseñanza para economizar los recursos naturales escasos. Esta es la razón por la cual nos hemos centrado en la fuerza del trabajo, la tecnología y el capital, que siempre se han caracterizado como los recursos escasos, por otro lado el medio ambiente se ha caracterizado por ser gratuito.

La economía del medio ambiente es la relación entre el marco socioeconómico y el sistema ecológico. Al definir esta materia en forma tan amplia también se incluyen los recursos naturales. A menudo se trata la economía de los recursos naturales y la economía del medio ambiente como dos materias separadas, sin embargo la economía ambiental utiliza una serie de herramientas microeconómicas para tratar el tema de las externalidades y la valoración económica de los recursos naturales.

2.2 HERRAMIENTAS MICROECONOMICAS.

El sistema de mercado.

Las relaciones entre economía (administración de la casa) y ecología (conocimiento de la casa) no han sido lo equilibradas que hubiera sido deseable (Saquete y Field, 1996). Es más, son abrumadoras las razones que llevan a pensar que el crecimiento económico se ha conseguido a costa del deterioro del entorno ambiental. El análisis económico ofrece, incluso, una explicación de porque han ocurrido las cosas de esta manera.

Nuestra sociedad se enfrenta al problema de decidir, como producir y como distribuir lo producido. Este es el problema económico de asignación de recursos, la sociedad debe decidir cómo distribuir unos recursos escasos (capital, trabajo, recursos naturales, etc.). Durante distintas maneras de resolver estos problemas, pero el sistema que se ha impuesto y que rige actualmente es el sistema de mercado. Su funcionamiento es sencillo: en un mercado idealmente competitivo confluye una serie de agentes económicos (productores, trabajadores, consumidores) que actúan de manera racional (tratan de maximizar unas funciones-objetivos, previamente definidas en el modelo), y a través de su interacción generan los precios. Estos precios son los que resuelven el problema de asignación de recursos. Los consumidores revelan sus preferencias a través de su disposición a pagar por una serie de bienes y servicios, las empresas recogen esta información y organizan el
proceso productivo en consecuencia. La competencia entre ellas, así como entre los propios consumidores y entre los servicios de los factores productivos, deberían garantizar un resultado óptimo. Las cosas en la realidad no son así porque existen imperfecciones en el mercado.

Competencia imperfecta.

Tanto en el mercado de bienes y servicios, como en el mercado de factores productivos: monopolio, oligopolio, y monopsonio; rigidez en el mercado de trabajo y capital; existencia de diversas formas de racionamiento en este último; intervención del gobierno a través de impuestos, subsidios, control de precios, etc.

Incompletitud. De muchos mercados, problemas de información, etc. Un conjunto de bienes y servicios que carecen de un mercado donde intercambiarse y por tanto carecen de precios de bienes (bienes no transables), los bienes públicos, los recursos comunes y las externalidades.

El último punto es de interés para el análisis que estamos desarrollando en este documento, porque el hecho de que ciertos bienes y servicios no tengan precio de mercado no implica que no tengan valor alguno. Por tanto, según el tipo de valor que tengan hay que estimar un precio para estos bienes e incluirlos dentro del sistema de mercado, para poder analizarlos.

- La principal característica de los bienes públicos es la de la no exclusión, cuando el bien en cuestión se ofrece a una persona se ofrece a todas. No puede excluírse a nadie de su disfrute, aunque no pague por ello, lo que indica que el costo marginal de ofrecérselo a una persona adicional es cero. Se dice que existen no rivalidad en el consumo por que el uso del bien por una persona no reduce el consumo potencial de los demás ejemplo, emisiones de radio y televisión, información meteorología público, etc.
- Los recursos comunes están caracterizados por la libertad de acceso. Ello implica que su uso y disfrute no tiene ningún costo pero, a diferencia de los bienes comunes, en muchos casos, existe rivalidad en el consumo.
- Mientras tanto, las externalidades se les llama economía externa. Estamos en presencia de una externalidad (economía externa) cuando la actividad de una persona (o empresa) repercute sobre el bienestar de otra (o sobre su función de producción), sin que se pueda cobrar un precio por ello, en uno u otro sentido. Existen externalidades positivas (economía externa) y externalidades negativas (deseconomía externa). Lo esencial, en cualquier caso, es que quien genera una externalidad negativa no pagara por ello en un sistema de mercado, a pesar del perjuicio que causa; y quien produce una externalidad positiva tampoco se ve recompensado monetariamente. Además, el sistema de mercado produce demasiadas externalidades negativas y menos externalidades positivas que las deseables.

El mercado en sí es la interacción entre la oferta y la demanda, y para comprender mejor su funcionamiento y como se puede valorar e introducir en este mercado los bienes ambientales y las externalidades hay que analizar sus dos principales elementos.

LAS MEDIDAS DE CAMBIO EN EL BIENESTAR.

El problema que se plantea ahora es el siguiente: ante la mejora en la calidad de un bien ambiental, el agua, por ejemplo, suponemos que la persona experimenta un aumento en su bienestar. Se siente mejor. Ahora bien, esta es una sensación subjetiva, y de lo que se trata es de expresarla en algún tipo de unidad de medida que resulte fácil de entender, y además, permita comparar la situación de dos personas distintas. El empeño no es sencillo, pero el análisis económico ofrece algunas alternativas para expresar, en dinero, estos cambios subjetivos en el bienestar personal.
Recordando algunos conceptos elementales de microeconomía, sabemos que existen formas de expresar, en términos monetarios, las modificaciones en algo tan subjetivo como el bienestar personal.

EL EXCEDENTE DEL CONSUMIDOR (EC)

Podría, en efectivo utilizarse el excedente neto del consumidor para medir el cambio productivo. El excedente del consumidor es el área que queda entre la curva de demanda de una persona por un bien cualquiera (su disposición a pagar por el), y la línea del precio del mismo; dicho de otro modo, es la diferencia, en términos intuitivos, entre lo que la persona está dispuesta a pagar por cada cantidad consumida de un bien, como máximo, y lo que realmente paga. En la figura, en la que se ha representado la demanda del bien (x) como una línea recta, en función de su precio, el excedente del consumidor en el punto A estaría dado por el área del triángulo APOD ante una caída del precio del bien X, hasta P1 por ejemplo, el beneficio que obtendrá por ello la persona, que ahora se sitúa en el punto B, estaría dado por el área ABP1PO. Obsérvese que la superficie indicada esta medida en dinero, que es, al fin y al cabo, lo que interesaba: traducir el cambio en el bienestar a unidades monetarias.

El problema de utilizar las variaciones en el excedente del consumidor, como medida de cambio en el bienestar, estriba en que, como es de sobra conocido, al no haberse neutralizado el efecto renta que también produce la caída del precio, la utilidad marginal de la renta cambia al variar esta, y, por tanto, se modifican, asimismo, las utilidades marginales de todos los bienes consumidos.

Figura 18 Excedente del consumidor.
Expresión matemática del excedente del consumidor:

$$EC \ S \ X \ (P, \ I) \ DP$$

LA VARIACION COMPENSADA

Dicha variación viene dada por la cantidad de dinero que, ante el cambio producido, la persona tendría que pagar (o recibir), para que su nivel de bienestar permaneciera inalterable.

Pongamos un ejemplo: supongamos que la municipalidad de una localidad está analizando la viabilidad de un plan que haga potable el agua distribuida en el municipio. Se sabe que la potabilización del agua aumenta el bienestar de sus habitantes, pero se requiere precisar cuánto, de forma que se pueda tener una aproximación monetaria de estos beneficios, comprobables de los costos de construcción y funcionamiento de un aplanta de tratamiento.

La VC es la cantidad de dinero que se le quitará a un consumidor después de un cambio. Al dejarlo a su nivel de bienestar original:

i) Cantidad Máxima que un individuo está dispuesto a pagar DAP por un cambio favorable (El consumidor no tiene derecho)

ii) Cantidad Mínima que el individuo está dispuesto a aceptar DAA por un cambio desfavorable (El consumidor tiene derecho)

LA VARIACION EQUIVALENTE (VE)

Podríamos alternativamente, haber preguntado a la persona por la cantidad de dinero que tendríamos que darle para alcanzar el mismo nivel de bienestar, como si el agua del grifo fuera potable, cuando no lo es, puesto que la potabilizacion aún no se lleva a cabo. En otras palabras el aumento de la renta que tendría que experimentar para poder alcanzar la curva de indiferencia H, si el precio del agua se mantiene a su nivel original es decir, si no se potabiliza. Esta es la variación equivalente.

La VE es la cantidad de dinero que se le entregará al consumidor si el cambio no se da, pero que lo hará pasar a Q'°n nuevo nivel de bienestar, como si el cambio se hubiera dado.

iii) Cantidad Máxima que el individuo está dispuesto a pagar DAP por evitar un cambio desfavorable. (Consumidor no tiene derecho)

iv) Cantidad Mínima que el individuo está dispuesto a aceptar DAA por renunciar aun cambio favorable (Consumidor tiene derecho)

Se trata pues de dos alternativas que intentan reflejar lo mismo: el incremento de bienestar que le supone a una persona, el hecho de que las autoridades municipales potabilicen el agua, y que podrían ser aplicadas asimismo en caso de empeoramiento de la situación.

Las tres medidas (Excedente del consumidor, Variación Compensada y Variación Equivalente) producen pues resultados distintos ante el mismo cambio. Y esto es preocupante, si la diferencia resulta sustancial. Pudiera darse el caso que una determinada inversión pública apareciera como rentable si se midiera su beneficio a través de una de las alternativas propuestas (Variación Compensada) y no parece existir una razón aparente para ello. Únicamente en el caso de que las preferencias de una persona fueran cuasiliniales (Las respectivas curvas de indiferencia fueran paralelas verticalmente) las dos medidas coincidirían. Una hipótesis sin embargo, muy poco realista.

¿Cuál de las medidas de bienestar elegir?
Las tres mediadas alternativas para valorar los cambios en el bienestar funcionan para el caso en el que el individuo puede ajustar las cantidades consumida de los bienes (excedente del consumidor, variación compensada y variación equivalente).

Hemos visto que aplicada una misma modificación en la oferta de un bien (cambios en le precio o en la cantidad o calidad ofrecida), las diferentes medidas no arrojan la misma valoración del cambio en el bienestar que ello produce en la persona.

Precisando un poco mas puede afirmarse que, en el caso de una caída en el precio, o una mejor en las condiciones de la oferta (mejorar la calidad ambiental) del bien considerado:

VC►EC►VE

Es decir, la variación equivalente supera al excedente neto del consumidor, y este a la variación compensada.

Cuando nos encontramos ante una subida de precio, o un deterioro en las condiciones de la oferta (calidad ambiental), la situación se invierte.

VC◄EC◄VE

El excedente del consumidor aparece, en ambos casos, ocupando la posición intermedia, entre la variación compensada.

Es bien cierto, además que la diferencia entre estas tres medidas será tanto mayor, cuanto mayor sea la elasticidad de la demanda- renta del bien cuyo precio cambia, y que las tres serían idénticas cuando la elasticidad precio fuese uno. De esta forma desaparecerá el efecto-renta y las tres curvas de demanda sería una. Como este no suele ser el caso, es optar entre ellas, teniendo en cuenta que la selección por una u otra modificara la valoración de los cambios en el bienestar producido.

FACILIDAD DE CÁLCULO

Comenzando por el excedente del consumidor (EC) La gran ventaja del EC sobre las otras medidas alternativas es clara. Al partir de la función de la demanda normal, su calculo se deriva de una magnitud, en principio observable, lo que facilita enormemente las cosas, pues las curvas de la demanda son compensadas por construcciones teóricas y como tales no directamente derivables de la actuación de la persona. Su cálculo como tendremos ocasión comprobar enseguida, aunque no imposible, es bastante más complejo. Desde un punto de vista practico no cabe duda de que el EC resultaría preferido a las otras dos.

Desgraciadamente, esto es todo lo que se puede decir a favor del EC. Y lo que puede decirse en contra es bastante contundente. Como ya a sido señalado con anterioridad, y debido a que no se aisa el efecto renta, la utilidad marginal producida por el consumo de todos los bienes varia, lo que hace imposible identificar el cambio en el bienestar atribuible estrictamente a la modificación analizada. Únicamente en el caso de la elasticidad renta del bien en cuestión fuera cero, o su elasticidad precio, uno el cambio en el excedente del consumidor representaría fielmente el cambio en el bienestar producido por la modificación de su precio: caso en el que, sin embargo, no tendríamos que preocuparnos de elegir, ya que, como decíamos una línea más arriba, las tres medidas serian iguales.
2.3 METODOS DE INTERVENCION PARA ALCANZAR LA CANTIDA ÓPTIMA DE EXTERNALIDAD NEGATIVA.

El enfoque económico de los problemas de la contaminación nos obliga a considerar la contaminación como un costo externo y a identificar el nivel de estos costos que sea un óptimo. Invariablemente este nivel no será cero, de modo que se justifica una cantidad positiva de contaminación. La cantidad óptima de externalidad negativa (Q") es el punto donde se interceptan la curva de costo marginal de la externalidad con la curva de beneficio privado neto marginal.

Para llegar a un nivel óptimo de la externalidad negativa existen las siguientes alternativas:

Impuestos pigovianos: consiste grabar al generador de la contaminación de acuerdo con el costo que impone a otros. O sea pigou creador de este impuesto propone la intervención estatal para imponer dicho impuesto y que el contaminador pague externalidad negativa (contaminación) se alcanza cuando se establece un impuesto igual a los costos marginales de la contaminación a nivel de producción óptima. Esto significa que aumentan los costos privados del contaminador al incluir los costos externos como impuesto, y de esta forma se dice que el costo de externalidad se “interioriza”. El impuesto pigoviano es cuestionado por los defensores del mercado libre, ya que afirman que si las externalidades de la contaminación están generalizadas, o inundan el sistema, las actividades gubernamentales serian extensas y afectarían a la mayoría de los aspectos de la actividad económica. Por lo tanto tratan de argumentar que no se requiere de una estructura de impuestos para tratar el problema de las externalidades negativas.

Negociaciones: este método fue desarrollado por Coase basados en los derechos de propiedad, establece que la solución se logra a través de un acuerdo entre los agentes involucrados (contaminadores y contaminados) mediante una negociación y si esta es exitosa se llega a un punto óptimo. O sea este método se basa en el mercado libre argumentando que:

- Si la contaminación es un costo externo, nada debería impedir que quienes lo padecen directamente con quienes causan la contaminación para reducirla. En esta forma podría llegarse a un acuerdo sobre la contaminación exactamente como ocurre con la venta de bienes en el mercado libre.
- Es evidente que un contaminador interesado en la maximización de sus beneficios privados no ofrecerá voluntariamente ninguna compensación a quien padezca la contaminación, pero este puede ofrecer un “pago” al contaminador para que se abstenga de contaminar.

Este método también tiene algunas críticas entre las que tenemos:

- En realidad no existe un estado de competencia perfecta.
- El beneficio marginal privado neto no es el mismo bajo competencia perfecta que bajo competencia imperfecta.
- Puede darse ausencia de negociación debido a que los costos de transacción son muy altos de tal manera que los beneficios se reducirán demasiado o no existen.

La solución de negociaciones depende de la definición de derechos de propiedad, el proceso parece funcionar en que los derechos de propiedad corresponden a quien padece la contaminación, pero el mercado resolverá el problema cuando se reúnan el contaminador y el contaminado.

Equilibrio de negociación
EmgE = BMg
Pero MBg = Img - emgP
Por tanto CmgE + CMgP = Img
O sea CMg + Img

Es decir el resultado de la negociación equivale a la combinación de producción y precio que se obtendría si se igualara el Img al CMS.

En la negociación intervienen los siguientes factores:

T: (negociación necesita de costos de transacción).
G: costos administrativos.
W: ganancia del bienestar.

a) Si T < W ocurrirá la negociación.
b) Si T > W no ocurrirá la negociación.
c) Se justifica la intervención del gobierno en la b) negociación si G < T y G < W.

El poder de negociación de los grupos de bajos ingresos es muy bajo por lo que generalmente saldrán perdiendo.

Normas y regulaciones: La mayor parte de las políticas ambientales se implanta mediante el establecimiento de normas.

Estas normas pueden expresarse en términos de la calidad del ambiente receptor, o en términos de la calidad del afluente arrojado al ambiente. La fuente de muchas normas tiende a residir en algún acuerdo explícito entre las partes afectadas acerca de lo que sea “aceptable” o “razonable”. En esta forma, una norma se puede volverse más rigurosa si hay una protesta pública acerca de algún aspecto de la contaminación, o puede relajarse si los contaminadores afirman que su implantación resulta demasiado costosa.

Muchos autores afirman que las normas son poco eficientes en la ejecución de política ambiental por dos razones:

1. Las normas tienden a basarse en factores que no se relacionan con ninguna evaluación objetiva de los beneficios y los costos.
2. Aunque se acepte una norma, su ejecución tiende a sanciones legales que no contribuyen en la forma menos costosa de asegurar la observancia de las normas.

La regulación y la tributación tienen sus propios costos y beneficios, y no puede conocerse claramente los beneficios netos de una medida o de la otra sin datos empíricos sobre las políticas efectivas, pero es posible que una norma dada se alcance mejor con los impuestos en algunos casos y con la regulación en otros casos.

Venta de derechos de contaminación: Los derechos de contaminación surgen como una alternativa para superar los problemas de la consecuencia de una norma ambiental, y se refieren a la creación de organismo oficial para la venta de derechos de contaminación o de certificados del uso del ambiente. Estos certificados tendrán un precio en el mercado por que los contaminadores tendrán que pujar por ellos en primer lugar y también estarán facultados para vencer o comprar certificados entre los propios contaminadores, quizás con la intervención del organismo como intermediarios en tales intercambios.

Sin embargo, tienen una desventaja grave, que si algún contaminador puede influir sobre el precio de los certificados, dicho precio se relacionará con los costos marginales del control de la contaminación en forma adecuada.
2.4 LA GESTIÓN INTEGRAL DEL RIESGO UNA POLÍTICA AMBIENTAL PARA ENFRENTAR LA VULNERABILIDAD ANTE LOS DESASTRES QUE SE HACEN MÁS FRECUENTES COMO CONSECUENCIA DEL CAMBIO CLIMÁTICO (EJEMPLO DE EXTERNALIDAD NEGATIVA)

El Gobierno Sandinista ha venido desarrollando una Política Nacional de Gestión Integral de Reducción del Riesgo a Desastres (PNGIRRD), con la que promueve cambios permanentes en la organización y actuación del Sistema Nacional para la Prevención, Mitigación y Atención de Desastres (SINAPRED), teniendo como objetivo principal la preservación y protección de la vida del pueblo nicaragüense.⁶

Los lineamientos propuestos para una Política Nacional de Gestión Integral de Reducción del Riesgo a Desastres (PNGIRRD) son los siguientes:

A. Promoción de una cultura de prevención y preparación de la población ante los desastres: ejecutar acciones de capacitación y preparación de las familias nicaragüenses, que promuevan su protagonismo y el desarrollo de hábitos que contribuyan desde el hogar y la comunidad a reducir su vulnerabilidad ante los desastres.

B. Fortalecimiento de la capacidad de respuesta comunitaria ante los desastres: Ejecutar acciones que contribuyan a la organización, preparación y desarrollo de capacidades comunitarias ante los desastres, así como su articulación en los territorios con las instituciones y los gobiernos locales a fin de asegurar respuesta y atención oportuna a las familias durante las emergencias.

C. Fortalecimiento de los sistemas de alerta y respuesta institucional ante los desastres: Se capacitará personal técnico, se desarrollarán sistemas de alerta temprana, atención especializada a las emergencias, programas de acompañamiento y reducción de las vulnerabilidades de las poblaciones en riesgo o que se vean afectadas por desastres naturales o socio-naturales.

D. Mitigación, Recuperación con Transformación y adaptación a los efectos del Cambio Climático: Se desarrollarán acciones municipales, departamentales, regionales y nacionales de rehabilitación y reconstrucción post desastre, con un enfoque integral de desarrollo que contribuya a reducir vulnerabilidades, mitigando los efectos de los desastres y del cambio climático.

E. Planificación, Desarrollo e Inversión Pública y Privada, con criterios de Gestión Integral de Reducción del Riesgo a Desastres: Se promoverá la incorporación de la gestión integral de reducción del riesgo de desastres en los planes, programas y proyectos nacionales, sectoriales y locales de desarrollo e inversión pública y privada para brindar las inversiones ante los desastres.

F. Gestionar el conocimiento Científico-Técnico sobre los riesgos a los fenómenos naturales: Se debe desarrollar un sistema de gestión de la información y generación del conocimiento científico técnico en gestión de reducción del riesgos de los desastres que contribuya a tener una población

⁶ Miércoles 08 de Mayo 2015 | Oficina de Divulgación y Acceso a la Información Pública/CD SINAPRED
mejor informada, el diseño de acciones eficaces y efectivas y fortalecer las capacidades humanas y técnicas de los distintos niveles del SINAPRED.7

Plan Nacional de Gestión de Riesgos.8

El Plan Nacional de Gestión de Riesgos PNGR 2010-2015, es un instrumento de carácter nacional, regional, municipal y local, que pretende ser desarrollado desde una perspectiva integradora, multisectorial e interinstitucional por las entidades de gobierno, Organismos no Gubernamentales (ONG), organizaciones locales y con la participación activa de la población en general; el PNGR 2010-2015 es la estrategia de corto, mediano y largo plazo para abordar los desafíos de la reducción de riesgos ante desastres en Nicaragua. Es el reto de nación, avanzar en las políticas, estrategias y mecanismos para incorporar la gestión integral del riesgo en la planificación del desarrollo y reducción de la pobreza a todos los niveles.

El PNGR 2010-2015, se construye en un momento determinante para definir la ruta en materia de gestión integral del riesgo en Nicaragua, vinculando aspectos de cambio climático, gestión ambiental, gestión del agua, reducción de la pobreza, desarrollo seguro, equidad de género, entre otros. Para ello se estructura en cinco Capítulos, entre los que se describen los antecedentes sobre las políticas ,estrategias y planes relevantes que han sido implementadas desde un esfuerzo multisectorial e interinstitucional orientados a la reducción de riesgo; el marco de políticas públicas asociadas con la gestión del riesgo; el marco conceptual que respalda el plan; el estado del riesgo en Nicaragua; y expone los objetivos de desarrollo, estratégicos y operativos, así como las acciones a emprender entre el 2010 y 2015.

Los cinco ejes programáticos del Plan Nacional son los siguientes:

1. Gestión Integral de Riesgo en los procesos de desarrollo e inversión pública y privada.
2. Gestión Territorial
3. Generación, Intercambio y Utilización de la Información Científico Técnica
4. Formación, Educación y Comunicación
5. Gestión de Desastres.

Para llevar a ejecución los ejes programáticos se cuentan con 5 objetivos estratégicos, 23 Objetivos Operativos y 246 actividades.

A continuación se presenta un cuadro comparativo de los objetivos estratégicos del Marco de Acción de Hyogo, el Plan Regional de Reducción de Desastres – PRRD 2006-2015 y del Plan Nacional de Gestión de Riesgos 2010-2015 de Nicaragua:

7 SISTEMA NACIONAL DE PREVENCIÓN ANTE DESASTRES
8 Tomado del “Documento País Nicaragua 2012. VII Plan de Acción DIPECHO “
<table>
<thead>
<tr>
<th>OBJETIVOS ESTRATEGICOS del MAH</th>
<th>OBJETIVOS ESTRATEGICOS DEL PRRD 2006.2015</th>
<th>OBJETIVOS ESTRATEGICOS PNGR 2010 .2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La integración más efectiva de la consideración de los riesgos de desastres en las políticas, los planes y programas de desarrollo sostenible a todo nivel, con acento especial en la prevención y mitigación de los desastres, la preparación para casos de desastres y la reducción de la vulnerabilidad</td>
<td>1. Promover la incorporación de la reducción de riesgo a desastres en la legislación, políticas, planes y proyectos de inversión, para el desarrollo sostenible y seguro de la Región Centroamericana.</td>
<td>1. Promover la incorporación de la gestión integral de riesgo de desastres en la legislación, políticas, planes y proyectos nacionales y sectoriales de desarrollo e inversión, como elemento transversal e integral de los procesos de desarrollo sostenible y seguro de Nicaragua, considerando aspectos de género y multiculturalidad.</td>
</tr>
<tr>
<td>2. La creación y fortalecimiento de instituciones, mecanismos y medios a todo nivel, en particular a nivel de la comunidad, que puedan contribuir de manera sistemática a aumentar la resiliencia ante las amenazas.</td>
<td>2. Impulsar y desarrollar mayor resiliencia de la población centroamericana ante los riesgos de desastres</td>
<td>2. Fortalecer las capacidades nacionales para la planificación del desarrollo territorial y local, con enfoque de derechos y equidad de género, como elemento esencial para el desarrollo nacional y local.</td>
</tr>
<tr>
<td>3. Fomentar la generación y transferencia de conocimiento que realicen las instituciones científicotécnicas, garantizando su acceso a los tomadores de decisión responsables de la planificación del desarrollo en el ámbito nacional, sectorial y local, y población en general, que favorezcan la disminución de la vulnerabilidad en la población.</td>
<td>3. Reforzar las capacidades institucionales y locales con</td>
<td>4. Reforzar las capacidades institucionales y locales con</td>
</tr>
</tbody>
</table>
Haciendo énfasis en el tema de preparativos y respuesta, se desglosan a continuación los objetivos operativos definidos dentro del Plan Nacional de Gestión de Riesgos para esta temática y que corresponden al Programa 5 “Gestión de Desastres, Recuperación y Reconstrucción con Transformación” y el Objetivo estratégico 5 “Fortalecer la capacidad de los preparativos, respuesta, a todo los niveles (nacional, sectorial, institucional, y local), a fin de reducir las pérdidas de vida y bienes materiales de la población nicaragüense, incorporando el enfoque de género y multiculturalidad”, convirtiéndose de hecho en las prioridades nacionales para los próximos tres años:

1. Consolidar la coordinación, comunicación, y articulación sistémica entre la SESINAPRED, los titulares de instituciones y Técnicos de enlace, en un esfuerzo de coordinación institucional permanente, en el ámbito operativo y de respuesta.

2. Fortalecer la capacidad de respuesta, mediante la promoción de procesos de coordinación, elaboración, actualización, divulgación y evaluación de los planes de respuesta en los diferentes niveles.

3. Impulsar la revisión, actualización, validación de manuales, protocolos y procedimientos de las Comisiones de Trabajo Sectoriales e instituciones integrantes del SINAPRED.

4. Fortalecer la capacidad territorial (nacional, regional, departamental y municipal) en el ámbito de preparativos y respuesta, mediante la formación y capacitación básica y/o especializada al personal de las instituciones que conforman el SINAPRED, de acuerdo a su competencia institucional, sectorial y territorial local.

5. Contribuir al fortalecimiento de las capacidades locales en preparativos y respuesta ante desastres, mediante la organización y equipamiento, con un enfoque de derecho, género y multiculturalidad.
6. Estructurar y fortalecer la plataforma de organización, comunicación e información a nivel nacional y sus vínculos con el CODE Nacional.

7. Fortalecer la gestión de albergues temporales y los centros estratégicos para el manejo de suministros.

8. Desarrollar un proceso de recuperación post-desastre, restableciendo las capacidades de las personas, sus medios de vida, las instituciones y los territorios, con la incorporación de las medidas de reducción de riesgos para crear resiliencia y evitar el incremento de las vulnerabilidades y las inequidades existentes.

CAPITULO III.

VALORACION ECONOMICA DE LOS RECURSOS NATURALES Y EL AMBIENTE.

Objetivo: Conocer y aplicar las técnicas de valoración y evaluación del ambiente y los recursos naturales, para crear conciencia de la responsabilidad intergeneracional de satisfacer las necesidades sin menoscabo del entorno natural.

INTRODUCCION

Las relaciones entre economía (administración de la casa) y ecología (conocimiento de la casa), no han sido lo equilibradas que hubiera sido deseable. Es más: son abrumadoras las razones que llevan a pensar que el crecimiento económico se ha conseguido a costa del entorno ambiental. El análisis económico ofrece incluso una explicación de por qué han ocurrido las cosas de esta manera.

Uno de los problemas económicos básicos de los que ha de ocuparse una sociedad es el de la asignación de recursos. Planteado en términos muy simplistas esto querría decir, sencillamente, que la sociedad tiene que tomar una decisión sobre cómo distribuir unos recursos escasos (capital, trabajo, recursos naturales, etcétera) en la producción de unos bienes cuya demanda parece superar siempre las posibilidades de la oferta. Sin embargo, la existencia de un amplio abanico de formas de competencia imperfecta, tanto en los mercados de bienes y servicios como en el de los factores productivos: presencia de monopolios, oligopolios y monopsonios; rigidez en los mercados de trabajo y capital; la existencia de diversas formas de racionamiento en este último; la intervención del gobierno a través de impuestos, subsidios, control de precios, etc., dificultan el funcionamiento de la economía y de los mecanismos que utiliza para lograr los objetivos de producción, distribución y consumo.

Por otro lado, existe todo un conjunto de bienes (y males) que, por carecer de un mercado en el que intercambiarse, carece asimismo de precio: es el caso de los llamados bienes públicos, los recursos comunes, o las externalidades en términos generales. Aquí surge la necesidad de establecer indicadores monetarios para este tipo de bienes y servicios que permiten la definición de un precio por el cual se intercambien en la economía.
3.1 Necesidades y usos de la Valoración Económica de los Recursos Naturales (Bienes, servicios e impactos)\(^9\)

La necesidad de contar con estimaciones monetarias del valor de los recursos naturales (bienes, servicios-BSA-e impactos ambientales), y de los beneficios y costos asociados a cambios en sus condiciones surgen de diversas fuentes.

Por un lado, para la adecuada evaluación de proyectos de inversión y las correspondientes evaluaciones de impacto ambiental que hoy deben realizarse especialmente con aquellos proyectos que hacen uso intensivo de la base de recursos naturales o generan impactos ambientales importantes. La consideración de los temas ambientales hace que la decisiones de inversión tome en cuentas importantes aspectos que afectan la calidad de vida y el bienestar económico, otorgándole, de esa manera, mayor robustez a estos criterios como indicadores de eficiencia económica en la asignación de recursos.

Por otro lado, el uso inadecuado de la base de BSA y su creciente degradación es resultado de la actividad de miles de individuos actuando des centralizadamente en diversos puntos del país y haciendo uso de diversos recursos. Las interconexiones dentro de los ecosistemas (bosques, cuencas, estuarios, bahía, etc.) y las relaciones intersectoriales implican que estas acciones tienen importantes efectos colaterales agregados (externalidades) no internalizados por los agentes emisores y tampoco considerados aun en el cálculo de los costos totales de producción e intercambio a nivel sectorial y nacional las cuentas nacionales, por tanto, tienden, en la mayoría de los casos, a sobre valorar la producción nacional y generar indicadores erróneos a los agentes productivos y a las personas que toman decisiones.

El problema anterior se agrava aun más cuando muchos de los recursos naturales y ambientales son de naturaleza renovable, como los hidrobiológicos, (peces, crustáceos, cetáceos, moluscos, algas), la fauna (aves, reptiles, mamíferos e insectos) o la flora (árboles, arbustos, plantas), cuyos derechos de propiedad o usos están en general, poco o malamente definidos. Ello conlleva generalmente a la tendencia perversa de sobreexplotación, toda vez que existan relaciones de precio-costo o costo-beneficio que incentiven el uso por sobre su rendimiento máximos sostenidos y su sobreexplotación comercial | (Agüero, 1989). Surge por tanto, la necesidad de conocer los costos ambientales de tales procesos, a fin de diseñar los mecanismos de regulación e incentivos apropiados y contar con sus valores económicos a fin de corregir los indicadores correspondientes. De igual manera, se requiere conocer los beneficios que la sociedad atribuye a mejorar la calidad ambiental y los costos que distintos niveles de inversión implican en desempeño de los BSA. El manejo de la contaminación ambiental, por ejemplo, requiere de la determinación de estándares ambientales basados en procedimientos objetivos, no solo técnicamente, sino también sustentados en métodos que permitan comparar los beneficios y costos que su implementación implica.

Por otro lado, la necesidad de contar con valores monetarios de los recursos naturales y ambientales aparecen en forma aun más directa en la determinación de indemnizaciones por perjuicios asociados a la contaminación sufrida por particulares o la comunidad o debido a la explotación o uso irracional de su base de recursos. Las instituciones depositarias de la administración de ciertos bienes naturales o ambientales, como es, por ejemplo el Ministerio del Ambiente, encargado de la administración de grandes e importantes aéreas del país, tienen la necesidad de contar con estos indicadores.

Las acciones judiciales contra los responsables de la contaminación ambiental o el mal uso de la base de recursos naturales pueden involucrar importantes transferencias de ingresos y afectar de

\(^9\) Tomado de “Guía Metodológica de Valoración Económica de Bienes y Servicios Ambientales”. CCAD Radoslav Barzev Editor.
forma significativa, la asignación de recursos en una economía. Esto implica que contando con un marco legal que permita asignar responsabilidades a los causantes del daño ambiental o BSA, debemos hacer una estimación lo más exacta posible del valor monetario del deterioro del recurso o del costo de su restauración o rehabilitación.

Varios son los usos del valor económico y social de los recursos naturales y de los impactos ambientales. Estos usos se hacen particularmente evidentes en una economía como la chilena, en la que la creciente apertura e integración al comercio internacional y el rol cada vez mayor que juega el mercado como mecanismo asignador de los recursos, deja al País altamente vulnerable a importantes efectos externos indeseables. Destacan, entre otros, los fuertes incentivos al uso y explotación de la base de recursos naturales promovidos por las atractivas condiciones de los mercados externos; la institucionalidad liberal respecto a los movimientos internacionales de capital (inversión extranjera) y los bajos costos privados en el país asociados al uso de los ecosistemas y el medio ambiente (externalidades) resultante en un sistema de derechos de propiedad y de uso poco definidos.

De esta forma al no reflejar adecuadamente los costos ambientales y eco sistémicos que los procesos de uso y de explotación de los BSA generan, el mercado provee indicadores incorrectos a los operadores privados y a los encargados del diseño de políticas de desarrollo. Así por un lado se sub dimensionan los costos sociales de las actividades extractivas y de manufactura. Por otro lado se generan fuertes incentivos a los operadores privados para sobre explotar los recursos renovables y sobre capitalizar sus procesos productivos, al fin de aprovechar al máximo las condiciones prevalecientes en el mercado.

Lo anterior indica que por un lado se debe de establecer mecanismos institucionales que definan adecuadamente los derechos de propiedad y uso de los recursos naturales y el medio ambiente, y por otro explicar e identificar aquellos costos ambientales (sociales) no reflejados adecuadamente por el mercado, a fin de determinar las tasas de uso las medidas de migración, los sistemas de compensación y las regulaciones que aseguren el mayor nivel de beneficios que estos costos son capaces de generar en forma sustentable.

Esta valoración permite así generar la información necesaria para la adecuada planificación y gestión de los BSA, la debida contabilidad de los cambios en el valor de la base de recursos naturales ambientales del país que se producen anualmente por la propia actividad productiva, el establecimiento de las normas, controles de regulación ambiental, consistentes con la sustentabilidad de los recursos naturales y sus ecosistemas.

En síntesis la valoración económica debe proveer la necesaria información que permita al menos:
 - Realizar las evoluciones de impacto ambiental de los proyectos de inversión
 - Incorporar los cambios producidos en la base de los recursos naturales y los impactos ambientales en la contabilidad nacional y el sistema de cuentas ambientales
 - Conocer el valor de los bienes y servicios naturales nacionales para su apropiada administración y gestión
 - Diseñar y planificar el desarrollo nacional en consistencia con un uso sustentable de los BSA y sus ecosistemas
 - Proveer la información necesaria para mejorar el desempeño del mercado en la asignación de recursos y usos de los BSA.

Así la naturaleza renovable, por un lado y la característica de bien publico, por otro lado, de la mayoría de los recursos naturales y ambientales hacen que estos sean generalmente transados en mercado en mercado formales y no se cuente, por tanto con indicadores adecuados a su valor. Ello ha llevado al desarrollo de diversos métodos de valoración que ajustan los valores de mercado a las externalidades o al desarrollo de técnicas y métodos que permitan estimar el valor económico a través de estimaciones indirectas o mediante encuestas o métodos experimentales (contingentes).
Así de hacer una revisión de distintos métodos existentes para valorar los beneficios y costos asociados a los recursos naturales renovables y el medio ambiente, se hace necesario discutir la base conceptual de los métodos de modo que nos permita adaptarlos y estar atentos a las limitaciones que pueden existir en una aplicación determinada. No se considera, en esta revisión, la valoración de los recursos no renovables, ya por su naturaleza finita y gracias a que se cuenta con derechos de propiedad más claramente definidos, su regulación y manejo es menos complicada y no tan necesaria.

3. EL VALOR ECONOMICO TOTAL DE LOS BIENES Y SERVICIOS AMBIENTALES (BSA)

El valor de los bienes, servicios y funciones naturales ambientales pueden ser divididos en varias categorías

1. Según se determine o no el mercado:

No todos los bienes, servicios y funciones que los recursos naturales generan son transados en los mercados. Las leñas que recolectan las familias rurales para su propio consumo o su producción agrícola para autoconsumo no son trasladadas ni valorada en el mercado. Tampoco lo es la función de protección contra vientos y mareas que cumplen los manglares en zonas costeras tropicales, o la capacidad de absorción de residuos que cumple el caudal de un río depositario de afluentes urbanos o la belleza escénica que provee la majestuosidad de un volcán nevado. No obstante, todo ellos constituyen, directa o indirectamente, beneficios importantes para el hombre. Se distingue, de esta forma, dos tipos de valores.

Valores de bienes de mercado.
Valores de bienes de no-mercado.

Según se determinen en el uso directo o no-directo.

Algunos tipos de bienes o servicios requieren, para realizar su beneficio, que estos sean consumidos, en el sentido que, luego de su consumo ya no está disponible a futuro para el consumo de otros. Tal es el caso del ejemplo anterior, luego que la captura y caza y consumo del salmon, este ya no está para la caza y consumo de otros pescadores (ni tampoco para el que lo consumió). Sin embargo, el beneficio de recreación obtenido por el goce de la belleza escénica del lago no impide que otros gocen del mismo servicio simultáneamente o posteriormente (no-consuntivo).

Se distingue, dentro de esta última categoría, valores derivados de algunos bienes y servicios para los cuales no se necesita contacto físico ni consumo de los mismos, tales como el obeneficio derivado de saber que existen las ballenas en la Antártica los cóndores en las montañas de los andes. El beneficio de este tipo de bienes y servicios se logra aunque se tenga la seguridad de que nunca se irá a la antártica o nunca se verá directamente un cóndor. A este tipo de valores se les denomina “valores de no uso” o de “existencia”. Finamente, dentro de esta misma categoría, podemos encontrar valores determinados por la mera posibilidad de gozar un bien o recurso en el periodo presente futuro. A este tipo de valores se les denomina “valor de uso presente” o “valor de uso opcional”. Se distingue así los diferentes tipos de valor.

- Valores de uso consumptivo
- Valores de uso no-consumptivo
- Valores de no-uso o existencia
- Valores opcionales (y cuasi-opcional)

Se observa así que el concepto de valor ha sido analizado y formalizado de varias maneras y se le ha dado diversas interpretaciones en el tiempo. Sin embargo, en la actualidad se ha llegado a
aceptar de manera más o menos amplia, el concepto de “valor económico total” fundamental que
determina el valor. En otras palabras, los recursos naturales y ambientales son considerados en
término económicos solo en su capacidad para satisfacer necesidades humanas y, por lo tanto
entrán en las escalas de preferencia humana.

El concepto de valor económico total (VET) es más amplio que la evaluación tradicional de
costo/beneficio, ya que permite incluir los bienes y servicios tradicionales (tangibles) como las
funciones del medio ambiente, además de los valores asociados al recurso mismo.

Conceptualmente, el VET de un recurso consiste en: valor de uso + valor de no uso.

Dado que el valor de uso puede descomponerse en valor directo e indirecto y valor proporcional, se
debe tener cuidado de no duplicar en la contabilidad las funciones directas en adición al valor de
uso directo resultante de ese mismo recurso.

<table>
<thead>
<tr>
<th>Valor Económico Total de los Servicios Ambientalista de un Ecosistema.</th>
<th>Valor de uso</th>
<th>Valor de no uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor uso directo</td>
<td>Valor uso indirecto</td>
<td>Valor de opción</td>
</tr>
<tr>
<td>Madera/Lena</td>
<td>Suplidor agua</td>
<td>Especies</td>
</tr>
<tr>
<td>Alimentos vegetales</td>
<td>Subterránea</td>
<td>Conservación de hábitat</td>
</tr>
<tr>
<td>Alimentos animales</td>
<td>Control inundación</td>
<td>Protección de biodiversidad</td>
</tr>
<tr>
<td>Artesanía</td>
<td>Retención de sedimentos</td>
<td>Potencial farmacéutico</td>
</tr>
<tr>
<td>Agua potable</td>
<td>Retención de nutrientes</td>
<td>Potencial turístico</td>
</tr>
<tr>
<td>Agua p/agricultura</td>
<td>Mantenimiento calidad del agua</td>
<td></td>
</tr>
<tr>
<td>Agua p/industria</td>
<td>Soporte a biodiversidad</td>
<td></td>
</tr>
<tr>
<td>Turismo/recreación</td>
<td>Producción de O2</td>
<td></td>
</tr>
<tr>
<td>Farmacéuticos</td>
<td>Secuestro CO2</td>
<td></td>
</tr>
<tr>
<td>Construcción</td>
<td>Belleza escénica</td>
<td></td>
</tr>
<tr>
<td>Materia prima</td>
<td>Protección cuenca</td>
<td></td>
</tr>
<tr>
<td>Investigación</td>
<td>Polinización</td>
<td></td>
</tr>
<tr>
<td>Educación</td>
<td>Reproducción especies</td>
<td></td>
</tr>
<tr>
<td>Reproducción</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomasa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantas medicinales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantas ornamentales</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En términos simbólicos, podemos resumir el concepto de EVT en:

VET = VU + VNU
VET = (VUD + VUI) + VO – VE

Donde:

<table>
<thead>
<tr>
<th>VET</th>
<th>Valor económico total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VU</td>
<td>Valor de uso</td>
</tr>
<tr>
<td>VNU</td>
<td>Valor de no uso</td>
</tr>
<tr>
<td>VUD</td>
<td>Valor de uso directo</td>
</tr>
<tr>
<td>VUI</td>
<td>Valor de uso indirecto</td>
</tr>
<tr>
<td>VO</td>
<td>Valor de opción</td>
</tr>
<tr>
<td>VE</td>
<td>Valor de existencia</td>
</tr>
</tbody>
</table>
La valoración económica del medio ambiente significa poder contar con un indicador de su importancia en el bienestar de la sociedad, que permita compararlo con otros componentes del mismo. Por tanto, lo normal será utilizar para ello un denominador común, que ayude a sopesar unas cosas y otras y que, en general, no es otro que el dinero. Para algunos autores esto constituye ya un anatema: proponer una valoración monetaria, crematística, de algo que, por definición es invalu-

Argumentar así, sin embargo, supone incurrir en una confusión de conceptos: valoración monetaria no quiere decir valoración de mercado. Supone como decimos la elección de un denominador común (ni siquiera de un numerario), que se considera conveniente, para reflejar cambios heterogéneos en el bienestar de la sociedad, que es lo que realmente cuenta.

Tendría que probarse, para descalificar este tipo de medida del bienestar (la monetaria) que el denominador común elegido (el dinero), condiciona hasta hacerla inaceptable la función de bienestar social utilizada, o las vías empleadas para encontrarla. El tema es pues bastante más complicado que lo que una descalificación apresura invita a pensar.

Por tanto, antes de entrar en sí a lo que es el proceso de valoración económica ambiental, analicemos algunas disyuntivas éticas que se plantean para comprender mejor este proceso:

PORQUE EL AMBIENTE TIENE VALOR?

Según David Pearce, el medio ambiente cumple al menos cuatro funciones que son valoradas positivamente por la sociedad:

1. Forma parte de la función de producción de gran cantidad de bienes económicos (procesos productivos que consumen agua de una determinada calidad, aire, etc.). El medio ambiente, y los recursos naturales en general forman la base sobre la que se apoyan muchos procesos productivos, que serían impensables en su ausencia. Ahora bien, el medio ambiente no sólo participa en los procesos de producción, distribución y consumo de bienes y servicios económicos ofreciendo unos insumos muchas veces esenciales: también recibe como retorno muchas cosas que en estos procesos se generan.

2. El medio ambiente actúa, en efecto, como un *receptor de residuos y desechos* de todas clases, producto tanto de la actividad productiva como consuntiva de la sociedad. Hasta un cierto límite, y gracias a su capacidad de asimilación, puede absorber estos residuos (que de esta manera son liberados sin costo), y transformarlos en sustancias inocuas o, incluso, beneficiosas: es el caso de algunos fertilizantes orgánicos, por ejemplo.

3. Proporciona, en tercer lugar, *bienes naturales* (paisajes, parques, entornos naturales...), cuyos servicios son demandados por la sociedad. Entra a formar parte, pues, de la *función de producción de utilidad* de las economías domésticas.

4. Finalmente, constituye «un sistema integrado que proporciona los medios para *sostener toda clase de vida*». Esta función es tan esencial que muchos autores la consideran parte integrante de la propia definición de medio ambiente.

Aceptar pues que el medio ambiente tiene ciertamente valor desde una perspectiva incluso estrictamente económica, el siguiente paso es intentar descubrirla. Si fuera posible *crear un mercado* en el que los bienes ambientales fueran objeto de compra-venta, el problema se simplificaría notablemente. No sería necesario siquiera iniciar el proceso de definir y buscar un valor el mercado se encargaría de ponerle un precio. El problema se centraría ahora en analizar las condiciones que harían aceptable tal precio como un exponente del valor del medio ambiente, pero éste es ya un problema común a todos los bienes y servicios producidos en la sociedad.

QUIEN DA VALOR AL AMBIENTE?.

Existen varias posiciones al respecto, por una lado se sitúan todas aquellas posturas derivadas de la ética de la tierra del Aldo Leopold, para las que la naturaleza no humana tiene un valor intrínseco, inherente, y posee, por tanto, derechos morales y naturales (Pearce y Turner, 1990, capítulo 15) De acuerdo a esta afirmación, por tanto el medio ambiente tiene valor per se: no necesita de nada ni de nadie que se le otorgue. Es más podría llegar afirmarse que las cosas (incluida la vida humana) tienen valor, por cuanto contribuyen a la integridad, estabilidad y belleza de la comunidad biótica. Para los defensores de esta postura, el medio natural y los recursos naturales tienen valor en sí mismos,

En el otro extremo, encontramos las posturas que comparten una ética antropocéntrica. Para ellas, lo que confiere valor alas cosas incluido el medio ambiente, es su relación con el ser humano; las cosas tienen valor en tanto, en cuanto y en la medida en que se lo dan las personas.

El análisis económico, en general, se encuentra alineado a esta segunda postura, aunque con algunas matizaciones. Comparte lo que podría determinarse una ética antropomórfica extendida, en la que la naturaleza tiene una serie de valores instrumentales para el ser humano, incluidas las generaciones futuras. Planteamiento no muy lejano al de algunas propuestas institucionalista que pretenden garantizar una cierta equidad intergeneracional (Pearce y Turner, 1990). Esta sería, pues, las primera de las opciones aludidas, y la primera respuesta. Una postura antropocéntrica y no eco céntrica: *“es el ser humano el que da valor a la naturaleza, a los recursos naturales, y al medio ambiente en general;”* Si no se comparte este planteamiento, es inútil seguir buscando la respuesta al problema planteado de la mano de los métodos que vamos a presentar en este capítulo.
QUIEN EXPRESA ESTOS VALORES?

Tenemos claro entonces que el medio ambiente tiene valor porque cumple una serie de funciones que afectan positivamente al bienestar de las personas que componen la sociedad. Ahora bien, ¿Quién da valor al medio ambiente? Planteado de forma más precisa se trata de delimitar el colectivo de personas que pueden exigir que las potenciales modificaciones de su bienestar que supone un cambio de calidad ambiental sean tenidas en cuenta a la hora de tomar las decisiones. Por tanto hay que tener en cuenta el tipo de derechos sobre el medio ambiente contemplados y respetados: derechos de los usuarios por ejemplo, frente a los derechos de los no usuarios. Existe, sin embargo, una cuestión previa que es la que aquí interesa: ¿Dónde se traza la frontera que separa a quienes tienen un derecho (usuarios o no usuarios) de quienes no están investidos de él?

El tema es doblemente complicado, ya que cada vez son más frecuentes los casos en los que la actividad nociva (o positiva) para el medio ambiente, se origina en un grupo social determinado (un país por ejemplo), mientras que las consecuencias negativas las padecen otros.

Podemos desdoblar la pregunta sobre dónde trazar la línea de demarcación en dos direcciones claramente diferenciadas: en el espacio y en el tiempo.

La frontera en el espacio: Se centra básicamente en la propiedad del medio ambiente y los recursos naturales por ejemplo. ¿Son Patrimonio nacional o local? ¿o Son por el contrario patrimonio de la humanidad? El problema, dado el valor creciente del medio ambiente y los recursos naturales, es difícil de tratar desde una perspectiva ética: no parece justo, en efecto que quienes son por definición los menos culpables de que las cosas hayan llegado al extremo al que lo han hecho (los países y regiones poseedores de estos recursos naturales), tengan que renunciar al disfrute de los rendimientos económicos que les podrían proporcionar (tremendamente necesarios, por otro lado), Y ello por que se lo demandan en nombre de la humanidad, quien no tuvieron ningún reparo en acabar con los que les habían correspondido y que probablemente gracias en parte a ello, se encuentran hoy en una situación económica más desahogada. Sin embargo, no es del todo evidente, que si la utilización de estos recursos, como patrimonio particular ha sido la causante de los problemas. Repetir la experiencia sea la mejor forma de evitarlos.

Aunque la respuesta a este problema ético no sea fácil, ya que en el fondo conecta con la problemática de los fundamentos del concepto de nación, el análisis económico permite desdoblar la cuestión de una forma, a mi modo de ver positiva: ¿Qué régimen de propiedad es el más eficiente a la hora de garantizar el objetivo propuesto (una utilización sostenible del medio ambiente) ¿Qué repercusiones económicas tiene, y cómo podrían ser compensados, si se considera de justicia, los perjudicados por él? En el fondo no se trata sino de una aplicación de viejo “criterio de compensación” de Kaldor Hicks.

Un excelente ejemplo de lo anterior, basado en el reconocimiento de que un recurso natural determinado (la atmosfera) es patrimonio común y, por tanto todas las personas tiene el mismo derecho a utilizarlo ha sido planteado ya por muchos autores. Todo el mundo es consciente, en efecto, de la necesidad de reducir drásticamente los emisiones CO2 a la atmósfera. El desacuerdo aparece a la hora decidir el cómo. No parece justo sin embargo, aplicar un tratamiento uniforme a todos los países, y obligarles a una misma reducción porcentual de sus emisiones, pongamos por caso, hasta al alcanzar el objetivo fijado. Sin atender por tanto al hecho de que no todos son igualmente responsables: las emisiones per capita difieren de forma abrumadora entre los más industrializados y los más pobres. ¿No será más justo calcular el monto de permitir a cada país emitir de acuerdo a este resultado? (El cálculo debería hacerse en términos netos: tomando en cuenta también lo que cada territorio gracias a la preservación de masas forestales por ejemplo, contribuye a fijar el carbono atmosférico y sumándoselo a su cuota de emisión). Así algunos países, los más atrasados, estarían muy lejos de alcanzar el monto que les sería asignado, en
tanto que otros, los industrializados, se verían obligados a reducir sus emisiones de forma dramática. Y aquí es donde podrían intervenir los instrumentos económicos derivados del Teorema de Coase: si estas cuotas fueran transferibles, los países con sobrantes podrían venderlas a los países obligados a reducir sus emisiones, que estarían dispuestos a pagar por ellas, en el límite, los costos económicos a que la reducción les fuerza (introducción de nuevas tecnologías, cierre de empresas, etc). Se ha calculado que las transferencias que recibirían los países subdesarrollados por este motivo no sólo permitirían pagar la totalidad de la deuda externa, sino que superarían con mucho el monto actual de la ayuda al desarrollo (Goodland y Daly, 1992). El reconocimiento del medio ambiente como patrimonio común no tiene porque conllevar siempre unas consecuencias redistributivas inaceptables. En cualquier caso, puede que valga la pena no mezclar las cosas (si es que se puede), tratar de resolver el problema de fondo, y luego buscar la forma de paliar las consecuencias más negativas que para los perjudicados tenga la solución adoptada.

La frontera en el tiempo: La segunda parte hace referencia al problema en el tiempo: a los eventuales derechos de las generaciones venideras.

El problema radica en que muchas de las decisiones que tomemos hoy con respecto al medio ambiente, van a tener unas consecuencias que afectarán a quienes todavía no han nacido. ¿Hasta qué punto han de ser tenidos en cuenta sus intereses? ¿Hasta qué punto han de ser tenidos en cuenta sus intereses? Y cómo, si por definición no están aquí para expresarlos?

Esto tiene su base en el principio del utilitarismo neoclásico: Cada persona busca maximizar su propio bienestar y debemos aceptar este egoísmo porque, el actuar así. Y dada la distribución de la renta lleva a la sociedad a una situación óptima. Se trata por tanto de una adaptación del utilitarismo benthamita de la economía clásica (según el cual lo que se trataba era de garantizar el mayor bienestar colectivo, que es la suma de los niveles de bienestar individuales), a una situación en la que ya no se aceptan ni las comparaciones interpersonales de utilidad, ni que ésta se pueda medir cardinalmente (Kneese y Schulze, 1985). La adopción de este principio, sin embargo, supone con respecto a los grupos afectados pero sin poder de decisión, que sus intereses sean tenidos en cuenta, siempre y cuando su bienestar forme parte de la función de utilidad de los agentes que deciden, y en la medida que la afecten: es decir, en la medida en que los que deciden sean altruistas y se preocupen por el bienestar de los demás.

¿COMO SE EXPRESAN ESTOS VALORES?

Otras de las preguntas que tenemos que contestarnos antes de implementar X o Y método de valoración es ¿Cómo expresa el ser humano el valor que confiere a estos recursos? ¿Qué mecanismo se considera adecuado para la expresión de estas preferencias?, son varias las posibilidades que se presentan, pero el análisis económico ha elegido, con algunas matizaciones, una de ellas: intentar obtener la misma información que revelaría la persona sobre sus preferencias en un mercado, en caso de existir éste. De esta forma se busca obtener la misma información que proporciona el mercado con respecto a los bienes privados: un indicador de la intensidad de las preferencias individuales con respecto a ellos. No es difícil llegar pues a la conclusión, por tanto de que el análisis desarrollado en los métodos de valoración económica ambiental, conduce a una valoración no solo individualista, sino, además de mercado: se valora tal y como lo haría un hipotético mercado. Lo cual desde una perspectiva ética puede presentar muchas críticas.

Por tanto, aceptar que sean los consumidores los que determinen en definitiva la estructura productiva y distributiva de la sociedad (incluido el nivel del calidad ambiental) supone aceptar dos cosas: El principio de la soberanía del consumidor y el sistema de democracia del mercado.

El análisis desemboca, por tanto, en un tipo de valoración económica muy discutible. Por ello se han intentado evitar los aspectos más negativos de la misma, a través de dos matizaciones complementarias:
a) Para evitar la excesiva dependencia de las valoraciones encontradas con respecto a la distribución de las renta, procediendo a normalizar en esta variable el resultado de los estudios empíricos. Con ello se evita la conclusión de que, dado que un medio ambiente de mayor calidad es un bien superior, desde un punto de vista económico, todas las medidas de mejora del mismo deberían dirigirse hacia las zonas de alto poder adquisitivo (las que expresan una mayor disposición a pagar por ellas), mientras que el deterioro se concentra en las más deprimidas.

b) En segundo lugar, combinando esta forma individualista de valoración, de expresión de preferencias, con una segunda vía que tiene en cuenta las preferencias colectivas.

3.4 LOS METODOS DE VALORACION ECONOMICA.

CLASIFICACION DE LOS METODOS DE VALORACION ECONOMICA DE LOS BIENES, SERVICIOS E IMPACTOS AMBIENTALES.

Métodos que valoración beneficios.

Métodos que valoran costos.

Las técnicas que valora beneficios resultantes de un cambio en la calidad ambiental o disponibilidad de un recurso dado asignar valor a los beneficios obtenidos por el uso de los bienes ambientales que se convertirían en costos si estos usos se perdieran.

Las técnicas que valoran costos, lo hacen midiendo los costos de prevenir cambios ambientales que, de otra manera, tendrían un impacto negativo en el bienestar económico, a través de cambios negativos en el medio ambiente.

Otras clasificaciones (<biblio>) agrupan ambos tipos de métodos anteriores, de acuerdo a:

1. Aquellos que usan valores directos de mercado a cambios de productividad.
2. Aquellos que usan valores de mercado de bienes o servicios complementarios o sustitutos.
3. Aquellos que usan valores determinados bajo condiciones hipotéticas o contingentes.

De acuerdo a la tabla anterior, tenemos que los métodos de valoración se pueden clasificar, de acuerdo al origen y disponibilidad de la información en:

- Métodos de valoración directos
- Métodos de valoración indirectos
- Métodos de valoración contingentes

Otra clasificación propuesta por Munasinghe, (1992), se hace de acuerdo al método analítico usado. Se divide en:

- Métodos basados en comportamiento observados
- Métodos basados en comportamientos potenciales
Poniendo el énfasis en la valoración de los impactos ambientales, EDIEN 1995, proponen una tipología alternativa para los métodos de valoración, el cual las técnicas se dividen en dos categorías, según el enfoque usado para valorar los costos sociales del daño. El primer conjunto se denomina enfoque de valoración objetivos (EVO) y el segundo enfoque de valoración subjetivo (EVS).

Los métodos agrupados bajo el EVO se basan en medidas del daño derivados de relaciones técnicas o físicas subyacentes, posibles de medir o estimar estadísticamente, entre el nivel de actividad dañina y la magnitud del daño, en el uso de estas técnicas, el comportamiento de los consumidores o individuos es asumido.

Los métodos agrupados en el EVS se basan en las percepciones de los individuos y evaluaciones subjetivas de los posibles costos del daño, estimado a partir de comportamientos observados en el mercado o en disponibilidades a pagar o aceptar compensaciones expresadas en encuestas.

Esquema de Valoración Económica Ambiental (Clasificación de los métodos de acuerdo a las variables utilizadas).

Se utiliza para medir externalidades y bienes y servicios ambientales:

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Variable a Observar</th>
<th>Hipotético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directos</td>
<td>Precio del mercado del bien ambiental.</td>
<td>Valoración contingente (enfrentamiento de la persona con un mercado hipotético)</td>
</tr>
<tr>
<td>Directos</td>
<td>Productividad de un recurso natural. Ej El suelo.</td>
<td></td>
</tr>
<tr>
<td>Indirectos</td>
<td>- Costo del viaje</td>
<td></td>
</tr>
<tr>
<td>Indirectos</td>
<td>- Precios Hedónicos</td>
<td></td>
</tr>
<tr>
<td>Indirectos</td>
<td>- Costos evitados</td>
<td></td>
</tr>
</tbody>
</table>

Los métodos directos se caracterizan porque se utiliza información primaria que se extrae directamente del mercado si es un bien existente en él, o de la persona o grupos de personas objetos de estudio para capturar su disposición a pagar o aceptar una compensación, a través de una encuesta o entrevista directa.

Los métodos indirectos utilizan otros instrumentos variables cercanas al bien o servicios a cuantificar, como es el caso de costos de oportunidad, valores ocultos, ahorro en costo, u otros.
Esquema de Métodos de Valoración por efectos y bases de la valoración

<table>
<thead>
<tr>
<th>Método de valoración</th>
<th>Efectos valorados</th>
<th>Bases para la valoración</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Valoración objetiva</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Cambios en la productividad</td>
<td>Productividad (rendimientos del trabajo, capital, de los recursos,.....)</td>
<td>Técnico/óblico</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comportamiento asumido</td>
</tr>
<tr>
<td>2. Costos de salud</td>
<td>Salud (morbilidad)</td>
<td>Técnico/óblico</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comportamiento asumido</td>
</tr>
<tr>
<td>3. Capital humano</td>
<td>Salud (mortalidad)</td>
<td>Técnico/óblico</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comportamiento asumido</td>
</tr>
<tr>
<td>4. Costos de reposición / reubicación</td>
<td>Activos de capital, activos de recursos naturales</td>
<td>Técnico/óblico</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comportamiento asumido</td>
</tr>
<tr>
<td>B. Valoración subjetiva</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Gastos de preventivos / de mitigación</td>
<td>Salud, productividad, activos de capital, activos de recursos naturales</td>
<td>Comportamiento (revelado)</td>
</tr>
<tr>
<td>2. Precios hedónicos</td>
<td>Calidad ambiental, productividad</td>
<td>Comportamiento (revelado)</td>
</tr>
<tr>
<td>Valor de la propiedad / terreno</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Costos de Viaje</td>
<td>Activos de recursos naturales</td>
<td>Comportamiento (revelado)</td>
</tr>
<tr>
<td>4. Valoración económica</td>
<td>Salud, activos de recursos naturales</td>
<td>Comportamiento (expresado)</td>
</tr>
</tbody>
</table>
3.5 METODO DE VALORACION CONTINGENTE:

Consiste en simular por medio de encuestas y escenarios hipotéticos un mercado para un bien o conjunto de bienes para los que no existe mercado.

Objetivos

- Evaluar principalmente los beneficios de los proyectos que ver con bienes y/o servicios ambientales que no tiene un mercado definido.
- Estimar la Disposición a pagar (DAP) o la Disposición a aceptar (DAA) como una aproximación a la variación compensada o la variación equivalente respectivamente, con base a la percepción o daño por parte del individuo.

Supuestos

- el individuo maximiza su utilidad dada una restricción de presupuesto representada por el ingreso disponible
- el comportamiento del individuo en el mercado hipotético es equivalente a un mercado real.
- El individuo debe tener completa información sobre los beneficios del bien, incluida esta en la disposición a pagar.

Diseño de la encuesta:

- Relevante sobre el objeto de estudio (bien o servicio a valorar) y el entrevistado debe estar al tanto de la información con el fin de que esté plenamente enterado del problema que se trate. En el caso de bienes ambientales es normal acompañar con gráficos, fotografías o dibujos que ayuden a la comprensión del problema.
- Modificación: modificación del objeto de estudio y se toma en cuenta el nivel de partida en cuanto a la calidad del bien ambiental, la modificación propuesta, lo que ello supone para la persona y el mecanismo de financiación de la medida del estudio.
- Características socio-económicas: anexar características más relevantes de la persona entrevistada, tales como: edad, ingreso, nivel de estudio, sexo, etc.

Formas de realizar las entrevistas:

- Personales: es la más común, permite proporcionar una información más detallada y personalizada.
- Telefónicas: menor costo, no se puede mostrar presentar ayudas visuales.
- Cuestionarios o encuestas por correo: bajos costos, imposibilidad de aclarar dudas.
- Experimentos de laboratorio: reunir a un grupo de personas seleccionadas a un lugar (residentes de un barrio) y se les entrega un cuestionario, el inconveniente es que no es fácil reunir a grupo representativo.

Formatos:

- Abiertos: el entrevistador simplemente espera la respuesta a la pregunta formulada.
- Subasta: el entrevistador adelanta una cifra y pregunta al entrevistado si estaría dispuesto a pagar esa cifra o más.
- Referendo: consiste en plantear la pregunta sobre la DAP por un cambio no de forma abierta sino binaria.
Juegos de pagos: consiste en preguntarle al individuo si estaría DAA una determinada cantidad de dinero, si la respuesta resulta afirmativa, la pregunta se repite con una cantidad menor, hasta que el individuo responda negativamente. Si la respuesta es negativa, se repite el procedimiento con un precio mayor hasta obtener una respuesta positiva.

Ventajas

- Puede utilizarse para medir en forma cuantitativa valores de no uso
- En ocasiones es el único método utilizable cuando no se puede establecer el vínculo entre la calidad del bien ambiental y el consumo del bien privado.
- No necesita ninguna estimación de la función de demanda individual.
- Permite descubrir la compensación exigida para permitir un cambio que deteriore el bienestar y renunciar a uno que lo mejorará, ofreciendo información como la que se obtendría en un mercado hipotético.

Limitaciones:

- Sesgo de punto de partida: se refiere a que el encuestador empieza el cuestionario con un precio inicial, el encuestado que no está seguro de una respuesta apropiada y quiere complacer al encuestador puede interpretar el precio inicial como una clave para la oferta correcta.
- Teórico: dificultad del individuo de entrar al mercado hipotético y la forma de plantear el cuestionario.
- Existe incentivo a responder estrategicamente ya que el entrevistado considera que puede influenciar una inversión o una decisión de política no contestando con certeza la pregunta del encuestador.
- Sesgo hipotético: el encuestado puede no comprender o percibir incorrectamente las características del bien ambiental que está haciendo descrito por el encuestador. No tomar las preguntas de valoración contingente con seriedad y simplemente responderán dando cualquier respuesta que se venga a la mente.
ESTUDIOS DE CASOS DE APLICACIÓN DEL METODO DE VALORACION CONTINGENTE

CASO 1

VALORACION ECONOMICA DEL RECURSO HIDRICO
COMUNIDAD EL REGADIO – ESTELI
-USO DOMESTICO-

Elaborado POR:
MSc. LUISA GAMEZ, ROSARIO AMBROGI, ILLENA SILVA

GENERALIDADES
✓ Localizada en el departamento de Estelí (180 km de Managua)
✓ Población de 1,150 (230 familias)
✓ Actividades económicas: agricultura, ganadería, comercio y servicios.
✓ Uso particular del agua para actividades de carácter doméstico (hogar).
✓ Actualmente existe una tarifa por el recurso al margen de la calidad del mismo, de la problemática de su prestación y de la cantidad de agua potable que se está utilizando.

OBJETIVO GENERAL:
Valorar en términos económicos la provisión del servicio ambiental hidrológico cuantificando la disposición a pagar ante una eventual mejoría en el servicio por parte de usuarios domiciliares.

OBJETIVOS ESPECIFICOS
✓ Establecer importancia que tiene el agua para el desarrollo de la vida social y económica de la comunidad.
✓ Determinar una valoración económica de acorde con las condiciones particulares de desarrollo.
✓ Cálculo de la disposición a pagar por el uso doméstico del agua potable.

METODOLOGIA
Se aplicó la metodología de Valoración contingente que consiste en simular por medio de encuestas y escenarios hipotéticos un mercado para un bien que no lo tiene, en este caso el agua de uso doméstico que tiene un pago simbólico de C$ 5 a C$ 10 córdobas por mes el cual no cubre los gastos de mantenimiento de la red, y los sitios de recarga donde nacen las fuentes de agua.

Los principales instrumentos metodológicos que se utilizaron fueron:
• Entrevistas personales: a usuarios del agua, familias campesinas de la comunidad.
• Formato subasta: Adelantar una cifra de dinero y preguntar al entrevistado si estuviese dispuesto a pagar una cantidad de dinero dada.
- Disponibilidad a pagar. Investigar a través de la encuesta si hay disposición a pagar por el recurso.

Estructura de la encuesta
1. Información referente a los usuarios (edad, nivel de educación, sexo, ocupación, etc.
2. Preguntas sobre la disponibilidad a pagar, mecanismo de pago, conocimiento de los usuarios en cuanto al recurso.
3. Información sobre el nivel de ingreso, cobertura del recurso, calidad del mismo, etc.

Montos de dinero que se ofrecieron:
- Cantidad de dinero estipulada por ENACAL para el consumo promedio de una familia de 5 personas en zonas rurales
 \(\left(\frac{17 \text{ m}^3}{\text{mes}}/\text{familia}\right) = 3 \text{ (barriles/día)} \Rightarrow \text{C$55.00 mensual} \right)
- Cantidad de agua que pueden ofertar de acuerdo al caudal de los ojos de agua (34 \(\frac{\text{m}^3}{\text{mes}}/\text{familia}\))
 \(\Rightarrow 6 \text{ (barriles/día)} \Rightarrow \text{C$100.00 mensual} \right)
MODELO

\[
DAP_{\text{(efectivo)}} = \beta_0 + \beta_1 \text{Ing} + \beta_2 \text{Da} + \varepsilon
\]

\[
DAP_{\text{(jornal)}} = \beta_0 + \beta_1 \text{Ca} + \beta_2 \text{P} + \varepsilon
\]

donde:
\(\text{Ing}\): ingreso familiar (+). entre más alto es ingreso, mayor es la cantidad de dinero que estoy dispuesto a pagar
\(\text{Da}\): demanda actual del recurso (+). entre más alta es la demanda actual, mayor es la cantidad de dinero que estoy dispuesto a pagar
\(\varepsilon\): último término es un error aleatorio

CARACTERIZACIÓN DE LA COMUNIDAD GENERALES

- Población estimada: 1,150 hab. (230 fam)
- Tamaño promedio del Hogar: 5 personas
- Modelo de Familia: Familia Nuclear.
- Nivel de Escolaridad:
Primaria 70%
Secundaria: 18.33%
Técnica: 3.33%
Superior: 3.33%
Otros: 5%

ECONOMICAS:
- **Ingreso Familiar Promedio:** C$ 907.00
- **Promedio de miembros trabajando:** 1.48

DISPONIBILIDAD DEL RECURSO

- **Abastecimiento**
 - 93% Red Privada Domiciliar
 - 2% Puestos Públicos
 - 5% Otras fuentes (fuera de la red)

Valoración del Servicio Actual

- 87% considera que es deficiente.
- Un promedio de 47 minutos de agua reciben diariamente las familias.
- 40% recibe menos de 15 minutos
- 42% recibe alrededor de 1 hora diaria
- 12% recibe más de una hora diaria.
- 6% no tienen acceso.

- **CANTIDAD ALMACENADA**
 - En promedio llegan a almacenar 0.66 Barriles.
 - El 60% de las familias alcanza a almacenar menos de 1 barril diario.
 - El 38% alcanza a llenar 1 barril
 - El 2% no almaceña agua
 - La cantidad almacenada depende del tiempo que el recurso está disponible, y de los recipientes que se tengan para esos fines.

- **CANTIDAD NECESARIA**
 - Se requiere en promedio unos dos barriles de agua diarios, para realizar las tareas del hogar
PRINCIPALES USOS DEL RECURSO

39% 13% 8%

TOMAR COCINAR BAÑAR OTROS (LAVAR, LIMPIAR, REGAR)

DISponibilidad actual vs demanda actual de agua potable

80% 20%

DISponibilidad actual DEManda actual
RESULTADOS:
Disposición a pagar en efectivo mensualmente: 20 córdobas equivalentes a 1.43 dólares (tasa de cambio en ese momento 13.90 córdobas por un dólar).
El porcentajes de respuestas positivas en la muestra es del 90% o sea que el 90% de los entrevistados manifestaron disposición a pagar.

CONCLUSIONES:
✓ El principal hallazgo del estudio, establece una disposición casi generalizada de pago, tanto en efectivo como en trabajo comunitario. Un 90% de las familias estarían dispuestas a pagar en efectivo un monto mayor a la tarifa actual de C$ 10.00, por una mejora efectiva en el servicio de agua potable.
✓ La disposición a pagar incrementa en un 100% el pago en efectivo. Se adiciona a ello, que existe una disposición a pagar con trabajo comunitario que alcanza un 83% de la población entrevistada, y que representa una innovación en la forma de pago de servicios ambientales, dado el aporte que estaría determinado en días/hombres.
✓ Con relación al ingreso familiar, se observa que entre un 1.3% y un 17% de la totalidad del ingreso que manejan las familias se podría dedicar al pago del recurso, siempre y cuando haya mejoras reales en la prestación del servicio, sobre todo del cambio en las cantidades enviadas a las familias diariamente. El promedio de pago según el ingreso alcanza un 4% del total.

3.6 METODO DE COSTO DE VIAJE
Se utiliza principalmente para la estimación de los beneficios generados por los sitios naturales que cumplen con una función recreacional en la función de utilidad familiar (que la persona visita para su esparcimiento). Lo que se pretende es calcular el número promedio de visitas per cápita de los residentes de cada zona, al lugar de recreación. Esta metodología se basa en el hecho de que las visitas a un sitio recreacional están en función del costo de trasportarse y tener acceso al mismo. Para el logro de este objetivo, construye una curva de demanda por recreación, para de esta manera poder asignar un valor monetario a cada unidad de distancia.

Fundamento teórico de los costos de viaje: Aunque el disfrute de los parques naturales y algunas áreas recreativas en algunas zonas costeras o de montaña es gratuito (normalmente no se cobra por la entrada a los mismos, y cuando se hace el precio es más simbólico), el visitante incurre en gastos para poder disfrutar de ellos (costos de viaje). (Azqueta, 1994).

Se trata de estimar como varía la demanda del bien ambiental (número de visitas), ante cambios en el costo de disfrutarlo. Para la realización de este tipo de análisis, es necesario determinar en qué medida se demanda el bien objeto de estudio.

Utilización del bien ambiental: Tasas de Participación: Informan por medio de encuestas a muestras representativas de la población sobre la realización de una serie de actividades recreativas que tienen que ver con la naturaleza (montañismo, vela, campamentos playas, pesca, senderismo, otros).

Utilización específica sobre un lugar determinado: Se intenta descubrir la demanda por los servicios de un lugar determinado, sin especificar una actividad determinada (un lago por ejemplo que se puede utilizar para pescar, nadar, remar, etc).

Costo de Viaje: En este aspecto se especifica el costo de acceso al lugar. Este si divide en:

a) Costos ineludibles: Constituyen los derivados al desplazamiento al lugar de recreación (gasolina, costos de amortización y mantenimiento del vehículo, y/o tiquete de autobús, tren, o pasajes aéreos, otros).
b) Costos discrecionales: El traslado a un determinado lugar de recreación puede implicar gastos de alimentación por el camino o en el sitio de recreación, en este sentido, se deben incluir aquellos costos que se buscan porque añaden un componente propio de utilidad a toda la experiencia (Azqueta, 1994).

Metodología que se emplea:

1.- Se divide el entorno de influencia del lugar de recreación en zonas, y cada zona se caracteriza por un determinado costo de viaje.

2.- Se realiza una encuesta entre la población de estas zonas (o bien entre los visitantes del lugar de recreación) que informe, del número de visitas a este lugar en el último año para el caso de las personas que viven cerca de la zona, procedencia y número de visitas para el caso de los visitantes. A su vez la encuesta incluirá características como el nivel de ingreso familiar, educación número de hijos y edad, entre otros.

3.- Con los datos obtenidos en la encuesta, se realiza una regresión en donde, la propensión media a visitar el lugar sea la variable dependiente y el costo de viaje, sea la variable independiente, para de esta manera poder obtener la demanda agregada de los servicios del lugar de recreación.

4.- Alternativamente con la información anterior, se podría estimar directamente la curva de demanda en función de las diferencias en el costo de viaje para cada persona, y las características de las mismas.

5.- Esta curva de demanda permitirá valorar, en términos monetarios cualquier cambio que se produzca en la cantidad y calidad de servicios ofrecidos, mediante un análisis de las modificaciones producidas en el excedente neto de los consumidores.

ESTUDIO DE CASO NO. 2

APLICACIÓN DEL METODO DE COSTO DE VIAJE

Belkis Alicia Calero, Darling Anielka Rodríguez, Gabriela Judith Lope Gutiérrez11

COSTO DE VIAJE EN OMETEPE

Se ha aplicado una encuesta en la Isla de Ometepe para determinar el Costo de Viaje de los Turistas que actualmente visitan la isla (Usar la Base de Datos en Excel y hacer los cálculos en STATA). Las variables de la encuesta están descritas en la tabla 1.

Tabla 1: Explicación de las Variables:

<table>
<thead>
<tr>
<th>a1...a6</th>
<th>Servicios en la Isla de Ometepe valorados de 0 a 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>Costo Total de la Experiencia</td>
</tr>
<tr>
<td>viajes</td>
<td>Número de viajes en un año</td>
</tr>
<tr>
<td>costgas</td>
<td>Costo gasolina por galón ($2/Gl)</td>
</tr>
<tr>
<td>dist</td>
<td>Distancia del sitio de partida a punto de destino</td>
</tr>
<tr>
<td>Kmom</td>
<td>kilómetros por galón</td>
</tr>
</tbody>
</table>

11 Estudiantes de Economía Aplicada de la Universidad Centroamericana.
Con el Método del Costo de Viaje se determinó el cambio en el número de visitas que podrían ocurrir como resultado de los cambios en la calidad ambiental y en el costo de viaje.

1. **Calcule la cantidad de viajes que han realizado los turistas en el último año.**

La cantidad de viajes realizadas por los turistas a la Isla de Ometepe en el último año es de 156.

<table>
<thead>
<tr>
<th>Total estimation</th>
<th>Number of obs = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>viajes</td>
<td>156</td>
</tr>
</tbody>
</table>
2. **Calcule el costo total de cada viaje – incluir el valor del tiempo.**

INCLUYENDO EL VALOR DEL TIEMPO (COSTO DE OPORTUNIDAD)

Costo total del viaje= Suma del costo de viaje más el costo de permanencia en Ometepe

\[C_{Vj} = Cd + Cot + Co \]

Donde,

- \(C_{Vj} \): Costo total de viaje
- \(Cd \): Costo total de desplazamiento
- \(Cot \): Costo del tiempo (Costo de oportunidad)
- \(Co \): Otros costos

Para calcular el costo total de cada viaje (incluyendo el valor del tiempo o el costo de oportunidad), se utilizó la siguiente expresión:

<table>
<thead>
<tr>
<th>Cd: Costo de desplazamiento</th>
<th>Ct: Costo del tiempo (Costo de oportunidad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C_{Vj} = \left(\text{Dist} \ast 2 \right) \ast \left(\frac{\text{Costo}}{Km} \right)] + (%tasa salarial \ast ingxhora(Horas de viaje y estancia)) + Otros Gastos</td>
<td></td>
</tr>
</tbody>
</table>

Para el cálculo del costo de la oportunidad del tiempo

1. Se generó en Stata el Salario por hora
 - Gen salariohora= ingreso/160
2. tomando en cuenta tvj1 el tvj2 y el tperm (todos ellos se pasaron a horas)
 - Gen tvj1h= tvj1/60
 - Gen tvj2h= tvj2/60
 - Gen tpermh= tperm*24
3. Se generó el tiempo total en horas
 - Gen sumtvjh= tvj1h+tvj2h
 - Gen tpermh= tperm*24
 - Gen titotalviaje= sumtvjh+tpermh
4. Se generó el costo de oportunidad del tiempo de la siguiente manera:
 - Gen copt= (1/3*salariohora*(titotalviaje))

Para el cálculo del costo de viaje (incluyendo el valor del tiempo) se hizo:

- Gen CVjtiempo= costgas+copt+otrocost
RESULTADOS DEL COSTO DE VIAJE INCLUYENDO EL VALOR DEL TIEMPO (COSTO DE OPORTUNIDAD)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cvjtiempo</td>
<td>100</td>
<td>125.464</td>
<td>43.98077</td>
<td>32.5212</td>
<td>305.7255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVjtiempo</td>
<td>12546.4</td>
<td>439.8077</td>
</tr>
</tbody>
</table>

El costo total de viaje con el costo de tiempo (costo de oportunidad) incluido, resultó ser de 12,546.4 entre todos los visitantes de la Isla, con una media de 125.46 y unos mínimos y máximos de 32.52 y 305.72 respectivamente.

COSTO DE VIAJE SIN INCLUIR EL VALOR DEL TIEMPO (COSTO DE OPORTUNIDAD)

1RA VERSION

\[C_{vjsintiempo} = \left(\frac{\text{Dist} \times 2 \times \left(\frac{\text{Costo}}{\text{Km}} \right)}{\text{Km}} \right) + \text{Otros Gastos} \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cvjsint</td>
<td>100</td>
<td>31.16768</td>
<td>13.35049</td>
<td>11.72549</td>
<td>91.27451</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cvjsint</td>
<td>3116.768</td>
<td>133.5049</td>
</tr>
</tbody>
</table>

2DA VERSION: reg (costgas + tvj1 + tvj2 + tperm + otrocost)

. sum CT

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>100</td>
<td>227.3027</td>
<td>75.43514</td>
<td>83.72549</td>
<td>466.8319</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>22730.27</td>
<td>754.3514</td>
</tr>
</tbody>
</table>
1RA VERSION: El costo de viaje sin costo de tiempo u oportunidad incluido arroja un valor de 3,116.77 entre todos los visitantes de la Isla, con una media de 31.17 y unos mínimos y máximos de 11.73 y 91.27 correspondientemente.

2DA VERSION: El costo de viaje sin costo de tiempo u oportunidad incluido arroja un valor de 22,730.27 entre todos los visitantes de la Isla, con una media de 227.30 y unos mínimos y máximos de 83.73 y 466.83 correspondientemente.

ESTUDIO DE CASO 3

VALORACIÓN ECONÓMICA DE LOS BENEFICIOS RECREATIVOS DEL REFUGIO NATURAL DE VIDA SILVESTRE “EL CHOCOYERO-EL BRUJO” MEDIANTE LA APLICACIÓN DEL MÉTODO DE COSTO DE VIAJE <<MCV>>

El Refugio de Vida Silvestre “El Chocoyero - El Brujo” se encuentra ubicado en el municipio de Ticuantepe, departamento de Managua y es uno de los sitios turísticos de mayor atracción para turistas nacionales y extranjeros, pues ofrece la posibilidad de interactuar tangiblemente con la naturaleza y los diferentes ecosistemas que conforman el lugar a tan solo 18 kilómetros de la capital.

Apegado al fundamento teórico del MCV, este estudio parte de la hipótesis de que tanto el costo de viaje como los ingresos per se de los visitantes son las principales variables que definen el número de visitas que se hacen en un año al sitio. Para demostrarlo, el estudio expone claramente las limitantes del método y los supuestos de los que depende la correcta aplicación del mismo.

Utilizar el MCV permitió estimar la valoración de los beneficios que obtienen los visitantes al hacer uso de los servicios que el Refugio les ofrece, es decir, se estimó exclusivamente su valor de uso recreativo.

Tomando en cuenta que el estudio corresponde a una tesis de pre grado <<estudio exploratorio>> y considerando el fin de la aplicación metodológica propiamente dicha, el estudio propone la realización de dos modelos de demanda a partir de una muestra de 50 visitantes nacionales <<aplicada durante el mes de mayo del 2009>>, de los cuales el 54% fueron mujeres y el restante 46% hombres, con una edad promedio de 31 años.

Basado en las experiencias de Azqueta (2004), se realizó la estimación de dos funciones de demanda a través del Método Mínimo Cuadrado Ordinario. Estas curvas fueron estimadas en un primer momento incluyendo el tiempo (costo de oportunidad) como variable explicativa y en un segundo momento, excluyendo dicha variable del modelo; lo que permitió contraponer ambas curvas buscando significancia estadística y consecuentemente estimar el excedente del consumidor como parámetro de medición del nivel de utilidad <<satisfacción>> percibido por los visitantes. Siendo este el equivalente al valor económico atribuido por parte estos a los servicios recreativos obtenidos a partir de la visita al sitio.

Tal como se esperó a priori, se obtuvieron como resultado una serie de relaciones directas y causales entre las que destacan el número de visitas y el nivel de satisfacción <<a mayor número de visitas, menos satisfacción>>.

Asimismo, cuando se incorporó el costo del tiempo como parte del costo de viaje, este último resultó en un valor promedio de C$460 y C$336 cuando no se incluyó, generando una variación del 27% respecto al primer caso. En el primer caso se reflejó una ligera disminución en el número de visitas el sitio por año.

Extrapolando los datos obtenidos y tomando como referencia las 3,320 personas que visitaron el refugio en el año 2008, la valoración económica total de los beneficios recreativos anuales al incorporar el tiempo como variable explicativa, resultó de C$1,440,480 <<USD51,445 a una tasa actual de C$28>> con un sesgo aproximado de ± 6.8%. En tanto, este mismo valor disminuyó a
C$610,880 $<USD21,817$ cuando no se incluye el costo de oportunidad del tiempo como parte del costo de viaje y asumiendo un sesgo aproximado de $\pm 8.6\%$.

Finalmente, la hipótesis fue aceptada en la medida que los resultados eran consistentes con la teoría keynesiana del consumo, la cual demostró que a mayor ingresos de los visitantes, tiene a ser mayor el número de visitas en el sitio, asumiendo el número de visitas como reflejo del nivel de consumo.

Alfredo Canales

3.7 METODO DE PRECIOS HEDONICOS

Este tipo de valoración intenta identificar la cantidad diferencias del valor de las propiedades producto de las diferencias ambientales entre las mismas. A su vez intenta inferir cuántas personas estarían dispuestas a pagar por una mejora en la calidad ambiental con lo que se encuentran y cuál es el valor social de la mejora (Pearce y Turner 1995).

Los llamados precios hedónicos intentan precisamente descubrir todos los atributos del bien que explican su precio y discriminar la importancia cuantitativa de cada uno de ellos. Atribuir, en otras palabras a cada característica del bien, su precio implícito: la disposición a pagar de la persona por una unidad adicional de la misma.

El método, como es obvio, tiene muchas aplicaciones en distintos campos. Una de ellas sin embargo es de especial interés, es el medio ambiente: algunos de los bienes que tratamos de valorar, son atributos de bienes que se comercializan en el mercado.

Cuando se adquiere una vivienda, no solo se esta comprando una serie de metros cuadrados de una determinada calidad sino que también se está escogiendo un entorno, que tiene una serie de características, tanto con respecto al barrio como respecto al medio ambiente en términos generales.

En términos muy sencillos, si encontramos dos viviendas iguales en todas sus características excepto una, el nivel del ruido, por ejemplo, la diferencia de precio entre ellas reflejaría el valor de este atributo que en principio carece de un precio explícito de mercado.

Supongamos que un bien privado H, miembro del conjunto de la clase de bienes Y; una vivienda determinada su precio (Ph) será una función del conjunto de características que posee:

$$Ph = Fh (Sh, Nh, Xh)$$

donde:

$Sh =$ Es el vector de características estructurales de la vivienda: metros cuadrados, materiales de construcción, zonas comunes, terrazas, ascensor, chimenea, numero de baños.

$Nh =$ Es el vector de características del vecindario: dotación de comercios, colegios, centros recreativos, composición de la población, nivel de seguridad ciudadana, proximidad del centro comercial, etc.

\(Xh = \) Es finalmente el vector de características ambientales del entorno, calidad del aire y agua, nivel del ruido, proximidad de zonas verdes, de la playa en su caso, vistas, etc.

Estimación de la Función de los Precios Hedónicos

A. Funciones Lineales: los precios implícitos de las diferentes características analizadas permanecerían constantes, cualquiera que fuese el nivel de partida de la misma. En otras palabras el “precio” de un incremento determinado en el nivel del ruido (el perjuicio que genera) sería el mismo en una situación de tranquilidad relativa (en un porque no cogestionado), que cuando partimos de una situación ya contaminada (en una calle invadida por el tráfico).

Esta es una posibilidad ciertamente remota. Para ello sería necesario, como ya apuntaba Rosen, que la persona pudiera ejercer el “arbitraje” entre las distintas características del bien combinarlas libremente hasta alcanzar la combinación deseada.

B. Funciones No Lineales: es mucho más común, por tanto la especificación de funciones no lineales. Ello supone que el precio implícito de cada característica cambia con cantidad de referencia de la misma. Lo interesante en este caso es analizar el comportamiento que supone con respecto a su precio implícito, pero ¿Cómo valoramos el precio implícito del ruido? Ante un aumento del mismo ¿aumenta más o menos que proporcionalmente?

Las diferentes especificaciones no lineales, ensayadas, suponen pues, un comportamiento de los precios implícitos acorde con alguna de las dos alternativas, y que se pueden detectar fácilmente analizando el signo de su segunda derivada.

La estimación de sus parámetros a partir de los datos puede hacerse de dos formas:

- A través de un análisis sin diagonal en el que se analiza un conjunto determinado de vivienda, en un instante del tiempo, y se recogen tanto sus precios como sus diferentes características.

- Mediante un análisis temporal, en el que se estudia como cambia el precio de una determinada vivienda o conjunto de viviendas, al ir variando la capacidad de algunos de los bienes ambientales de la zona (con la construcción de un aeropuerto cerca).

ESTUDIO DE CASO NO. 4

Valor Económico de la Calidad Ambiental: Aplicación del Método de Precios Hedónicos en los Residenciales Villa Fontana y Rubenia

| Elba Patricia Ruiz Ochomogo |
| María José Granizo |
| Luis Francisco Martínez Soriano |
| Pedro Rafael Rojas López |

Metodología

Tipo de investigación

El estudio realizado por el grupo es una investigación analítica; debido a que nuestro objetivo es valorar económicamente y ecológicamente la calidad ambiental para demostrar su aporte en el bienestar de la sociedad. A través del estudio de las características estructurales, de localización y las ambientales que presenten los bienes inmuebles en la zonas de muestra.

Método de Investigación

En nuestro caso se utilizarán dos métodos para elaborar la investigación: el método científico, el cual nos dará las pautas necesarias para llegar de forma segura al alcance de nuestros objetivos, y el método deductivo que nos permitirá ver nuestras variables en forma particular para cada una de las zonas de muestra, permitiéndonos llegar a relaciones y encontrar la participación de los factores ambientales en el precio de los bienes inmuebles, además de conclusiones generales que nos permitan mostrar la valoración económica asociado a estas.

Fuentes de Información

Para la elaboración de este estudio se han integrado dos fuentes de información básica, las primarias y las secundarias:

- **Las fuentes primarias**, se basan en la realización de encuestas dirigidas a los habitantes de las viviendas, de las zonas de muestra: Residencial Villa Fontana y Rubenia.

- **Las fuentes secundarias**, se basan en documentos que por su relevancia fueron tomados en cuenta para poder aplicar correctamente el método de valoración económica ambiental y establecer un punto de referencia para instaurar valores monetarios a la calidad ambiental en relación al precio de la vivienda; principalmente recopilados vía Internet, periódicos y estudios ubicados en el Centro de información para la Promoción y el Desarrollo de la Valoración Ecologica.

Determinación del Universo

Ámbito Poblacional

En nuestra investigación, con el propósito valorar de forma más certera la calidad ambiental hemos elegido dos zonas de muestra que posean diferentes condiciones ambientales permitiéndonos de esta manera diferenciar la cantidad de dinero que están dispuestos a pagar los habitantes de las viviendas por dichas características ambientales; hemos limitado el alcance del estudio a la población de los Residenciales Villa Fontana y Rubenia.

Tipo de muestreo

Para determinar el tipo de muestreo que utilizaremos en nuestro estudio hemos considerado la existencia de aspectos diferenciados entre los bienes inmuebles de cada una de las zonas de muestro, Residencial Villa Fontana y Rubenia, por lo que elegimos utilizar el método de muestreo aleatorio que nos va ha permitir captar los datos estadísticos y representativos de cada una de las variables de interés.

Tamaño de la muestra
En vista a las limitaciones económicas y de tiempo la muestra solo consto de cincuenta participantes, de las cuales 25 fueron tomados del Residencial Villa Fontana y los restante 25 en el Residencial Rubenia, permitiendo eliminar diferencia en la cantidad de datos disponibles y recopilados para cada una de las zonas de estudio.

Procesamiento de la Información

Una vez recopilada y ordenada la información, esta va a ser tratada o bien procesada por medio de una base de datos elaborada en el paquete estadístico computarizado SPSS, y como un medio auxiliar en el programa de Office Excel.

1. Zonas de Estudio

Con la finalidad de aplicar el “Método de Precios Hedónicos” y así poder demostrar la influencia de la calidad ambiental en el bienestar de la sociedad, de una manera representativa, se han seleccionado dos sujetos de estudio: el Residencial Villa Fontana y el Residencial Rubenia; para realizar una comparación que permita valorar en forma diferenciada la calidad ambiental que presentan cada una de las zonas de muestra en relación a los precios atribuidos a los bienes inmuebles existentes en ellas.

1.1 Residencial Villa Fontana

El Reparto Villa Fontana se encuentra ubicado en el distrito V de la Ciudad de Managua, el cual se limita al norte con el Distrito No. 4, al Sur con los municipios de Nindirí, La Concepción y Ticuantepe, al Este con el Distrito No. 6 y al Oeste con el Distrito No. 3. Este Distrito, se caracteriza por poseer un alto potencial de áreas aptas para el desarrollo urbano en la zona Sur- Este.

En términos urbanísticos es un distrito en constante crecimiento, con un alto porcentaje de área rural, equivalente al 40 % del área total del Distrito14. Debido a su posición geográfica este es

14 Fuente: “Colección Nick CyberMunicipio”
importante ya que está rodeado de trascendentales pistas, zonas residenciales, escuelas, universidades y hoteles.

En términos más puntuales, el Residencial Villa Fontana se encuentra a 12º07¨55.72" latitud Norte y 86º13¨40.84" Longitud Este, posicionamiento global, en una zona libre que permite la elaboración de proyectos urbanísticos como ha sido el mismo fundado y oficialmente abierto para su habitación en 1995, aproximadamente, con un número inventariado de inmuebles de 44 viviendas y una población estimada de 264 habitantes.

Distribución de Tenencia

<table>
<thead>
<tr>
<th>Residencial</th>
<th>Rango de Precios ($)</th>
<th>% de Casos</th>
<th>Propia</th>
<th>Alquilada</th>
<th>Prestada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Villa Fontana</td>
<td>0 a 50 mil</td>
<td>72%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>50 a 100 mil</td>
<td>4%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>150 a 200 mil</td>
<td>8%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>200 a 250 mil</td>
<td>16%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Total Villa Fontana</td>
<td></td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

De acuerdo a los precios estimados de las viviendas, dentro de la muestra tomada del residencial, se logra observar que la tenencia de la propiedad y el inmueble habitado es de un 100 por ciento propio y legal.

1.1.1 Características Estructurales de la Vivienda

En Villa Fontana las viviendas encontradas en este son de características estructurales espaciosas, técnicamente bien construidas con excelentes acabados constructivos y arquitectónicos, en pocas palabras de diseño exclusivo hasta el punto que solo constituyen el 1% del total de las viviendas de Managua agrupadas en 11 barrios al sur, este y en los accesos a la ciudad.

Superficie del Terreno

![Gráfico de barras]

- □ 200 a 300 m2
- □ 300 a 500 m2
- □ 500 a 700 m2
- □ 700 m2 a más

Estas características en gran parte se debe al nivel social de los habitantes del inmuebles de los cuales el 90% posee un carrera profesional, que en este caso aseguran un ingreso significativo, y a la extensión del área del terreno en el que se encuentra asentada la vivienda, siendo que el 72% de los casos de inmuebles se encuentran en áreas de terrenos que oscilan entre los 300 a 500 metros cuadrados y un 28%, valioso, en terrenos de más de 500 metros cuadrados.
Debido a las características del terreno nos encontramos con construcciones promedio que oscilan entre 200 a 300 metros cuadrados, en las cuales los materiales predominantes de construcción en la mayor parte de la estructura del bien inmueble es el bloque, representando el 64%, con respecto a los material predominante para la elaboración del techo es el Zinc representando el 32% de los inmuebles.

La distribución de la ocupación del terreno con respecto a las construcciones elaboradas se puede describir en la siguiente forma: en la parte interna el número promedio de cuartos y baños es de 5 y 2 respectivamente con respecto a la parte externa en el 100% de las viviendas sus habitantes han destinado un espacio del terreno para la elaboración de un jardín, un garaje y un porche.

1.1.2 Características de Localización

En cuanto a las características del vecindario y Acceso con las que cuenta el residencial, podemos geográfica por encontrarse, en un 86%, próxima a centros recreativos como: centros comerciales, discotecas, centros deportivos, restaurantes y centros educativos, de características generalmente privadas.

En materia de educación superior se cuenta con Universidades Privadas entre las que sobresalen la Universidad Católica, la Universidad de Ciencias Comerciales, la Universidad
Evangélica Nicaragüense, la Universidad Tomás Ruíz donde se localiza el Instituto de Medicina Oriental Japón- Nicaragua y la Universidad Metropolitana.

Respecto al abastecimiento de los servicios básicos de la zona; la población ubicada en esta área consolidada y desarrollada cuenta con la cobertura total de los servicios básicos y también de drenaje sanitario y pluviales, considerando su abastecimiento como buena.

El residencial, en materia de acceso, cuenta con calles que poseen un revestimiento asfáltico o que se encuentran adoquinados, sin contar posee en sus cercanías varias pistas principales, carreteras, by pass y avenidas que tienen las características de absorber gran cantidad de tráfico vehicular como es la pista Jean Paul Genie.

Referente a la seguridad con que cuenta la zona; a pesar de que en el presente año se han informado un aumento en el índice de delincuencia en el residencial en forma tanto interna como externa los habitantes del mismo que fueron entrevistados respondieron que consideran en un 76% de los casos que consideraban la zona como segura, siendo esta misma proporción la que está dispuesta a pagar una cuota por el servicio de vigilancia.

1.1.3 Características Ambientales

A través del estudio se ha logrado clasificar ciertos atributos ambientales existentes en la zona de Villa Fontana como es la tranquilidad ya que la población estudiada no se encuentra afectada por ninguna empresa o industria que perturbe las condiciones naturales del ambiente comprobado en que solo el 28% de los habitantes consideran el sector ruidoso, debido a la cercanía de las avenidas y pistas por donde circulan una gran cantidad de vehículos.

Otro atributo es el acceso a áreas verdes cercanas a la zona como son: la Rotonda Centroamérica, la Rotonda Jean Paúl Genie, la Rotonda Santo Domingo, la Rotonda Cristo Rey, el Boulevard en la Carretera a Masaya, la Pista El Dorado y la Pista Jean Paúl Genie. Además de áreas recreativas como: el Polideportivo España, el Parque Los Marañones, el Parque Las Palmeras, el Parque en Jardines de Veracruz y el Parque de Bosques de Altamira, que a pesar de su distancia son considerados como accesibles por los habitantes del residencial.

A pesar de estos elementos benéficos que son considerados como positivos en la valoración de los bienes inmuebles del residencial también excitan elementos que tiene un efecto contrario en tal valoración como es en este caso que el sector es amenazado cada año por inundaciones provocadas por lluvias y por efectos directos o indirectos de huracanes y lluvias que afectan debido a los asentamientos espontáneos recientes en los cuales no existe un sistema de acueducto y alcantarillados; sin contar con 9 fallas geológicas atraviesan el distrito en que se encuentra ubicada Villa Fontana.

El referencia a los problema ambiental estos son generalizados; como habíamos mencionado antes los asentamientos espontáneos son los principales causantes del deterioro ambiental, así como la contaminación vehicular producida por la circulación de vehículos en las principales pistas y avenidas, a pesar de esto el 57% de la población considera que la zona poseen un aire de calidad.

1.2 Residencial Rubenia

El Residencial Rubenia se encuentra en el distrito VI de la Ciudad de Managua ubicado en la zona Este de la misma, limitado al Norte con el Lago de Managua, al Sur con el distrito No. 5, al

16 Anexo: “Características Ambientales”
Este con el municipio de Tipitapa y al Oeste con los distritos No. 4. Es considerado uno de los más importantes de la capital, en el que se encuentra ubicado el único Aeropuerto Internacional de Nicaragua.

Esta zona posee un alto índice de desarrollo industrial, almacenamiento y transporte, se encuentra restringido en su desarrollo urbano por la presencia del Aeropuerto Internacional y la zona acuífera que abastece gran parte del servicio de agua potable de Managua. Además de una gran contaminación ambiental debido a su desarrollo habitacional desordenado en sus sectores aledaños donde se concentra el mayor número de colonias populares, urbanizaciones progresivas y asentamientos espontáneos.

El residencial fue creado en 1975, aproximadamente, con un número inventariado de casas de 350 viviendas y una población de 1400 habitantes.

Distribución de Tenencia

<table>
<thead>
<tr>
<th>Residencial</th>
<th>Rango de Precios ($)</th>
<th>% de Casos</th>
<th>Propia</th>
<th>Alquilada</th>
<th>Prestada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubenía</td>
<td>0 a 50 mil</td>
<td>48%</td>
<td>92%</td>
<td>0%</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>50 a 100 mil</td>
<td>40%</td>
<td>80%</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>150 a 200 mil</td>
<td>8%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>200 a 250 mil</td>
<td>4%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Total Rubenía</td>
<td></td>
<td>100%</td>
<td>88%</td>
<td>8%</td>
<td>2%</td>
</tr>
</tbody>
</table>

De acuerdo a los precios estimados de las viviendas, dentro de la muestra tomada del residencial, se logra observar que la tenencia de la propiedad y el inmueble habitado es de un 88% por ciento propia y legal.

1.2.1 Características Estructurales de la Vivienda

Las viviendas encontradas en este sector son de características de diseño moderno, en conjunto homogéneo, concebidas como unidades mínimas o básicas para ser Ampliadas por el propietario y con todos los servicios básicos de infraestructura, en pocas palabras residenciales en serie que constituyen el 6% del total de las viviendas de Managua agrupadas en 7 urbanizaciones al este de la ciudad.

Superficie del Terreno

- 8%
- 92%

- 200 a 300 m2
- 300 a 500 m2
- 500 a 700 m2
- 700 m2 a mas

Estas características en gran parte se debe al nivel social de los habitantes del inmuebles de los cuales el 86% posee un carrera profesional, y a la extensión del área del terreno en el que se encuentra asentada la vivienda, siendo que el 92% de los casos de inmuebles se encuentran en
áreas de terrenos que oscilan entre los 200 a 300 metros cuadrados y un 8% en terrenos que oscilan entre 300 a 500 metros cuadrados.

Dimensiones de la Construcción

<table>
<thead>
<tr>
<th>Dimensiones</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 a 150 m²</td>
<td>12%</td>
</tr>
<tr>
<td>150 a 200 m²</td>
<td>20%</td>
</tr>
<tr>
<td>200 a 300 m²</td>
<td>56%</td>
</tr>
<tr>
<td>300 m² a más</td>
<td>12%</td>
</tr>
</tbody>
</table>

Debido a estas características las construcciones promedio encontradas en los terrenos oscilan entre 200 a 300 metros cuadrados en el 56% de los casos en un segundo grado de significancia se encuentran las viviendas que oscilan entre los 150 a 200 metros cuadrado; en las cuales los materiales predominantes de construcción en la mayor parte de la estructura del bien inmueble es el bloque, representando el 72% de los casos, con respecto a los material predominante para la elaboración del techo es el Zinc representando el 56% de los inmuebles.

La distribución de la ocupación del terreno con respecto a las construcciones elaboradas se puede describir en la siguiente forma: en la parte interna el número promedio de cuartos y baños es de 3 y 1 respectivamente con respecto a la parte externa en el 72% de las viviendas sus habitantes han destinado un espacio del terreno para la elaboración de un jardín, un garaje y un porche.

1.2.2 Características de Localización

[Vista Panorámica de Rubenia](image)
En cuanto a las características del vecindario y Acceso podemos afirmar que Rubenia se localiza en una zona céntrica por encontrarse, en un 96%17 de los casos, próxima a centros recreativos como: centros comerciales, discotecos, centros deportivos, restaurantes y centros educativos.

Respecto al abastecimiento de los servicios el residencial no se encuentra en buenas condiciones debido a que la población ubicada en esta área no está totalmente abastecido con los servicios básicos como es el caso del servicio telefónico, en cuanto a los servicios de agua domiciliar y energía eléctrica se noto que el 100% se encuentra abastecido pero marcaron que esto fallan constantemente y por largos periodo de tiempo por lo que solo el 44% de sus habitantes lo considera como un abastecimiento de servicios de buena calidad.

En lo que se refiere al acceso en la zona, el sector cuenta con lineales de calles, pistas y avenidas importantes que se encuentran revestidas con asfalto o adoquinadas destacándose la pista del Mercado Mayoreo, en forma contradictoria un 20% de la zona, en la parte interna, cuenta con calles de tierra. En estas líneas de calles se encuentra una gran concentración de industrias, predominantemente de comercio informal y servicios.

Ente el constante aumento en la población comercial y la cercanía de barrios marginales en los cuales se registran un alto índice de delincuencia y asaltos a mano armada la zona se puede caracterizar como insegura, algo muy apreciado ya que solo el 56% de los entrevistados la consideran segura en tanto que el 80% paga y esta dispuesto a pagar una cuota por el servicio de vigilancia

1.2.3 Características Ambientales

El Residencial Rubenia por sus características de acceso y ambientales se ha clasificado como una zona intranquila por la existencia de vías traficadas a demás de la existencia de empresa e industria que perturbe las condiciones naturales del ambiente comprobado ya que el 32% de los habitantes consideran el sector ruidoso, debido a la cercanía de las avenidas y pistas por donde circulan una gran cantidad de vehículos y empresas informales como es una pequeña productora de bloque que se encuentra en el centro del residencial.

El principal riesgo detectado en el sector es el crecimiento demográfico y desordenado de la población, asociado al surgimiento de asentamientos humanos espontáneos cuyas viviendas no cumplen con las normas de construcción. Al encontrarse en el distrito con mayores problemas ambientales no se puede escapar de sufrir ciertos atajamiento entre los que se pueden distinguir la saturación de las vías vehiculares que a lo largo del día llegan a proporciones exageradas sin contar con las horas pico. El gran número de personas que transitan por las vías dan como resultado una alta concentración de desechos en las pistas por la falta de educación ambiental de la población principalmente en los puntos donde existe concentración peatonal.

Referente a la cercanía y existencia de áreas verde que se encuentra en el residencial se destaca el Parque Rubenia, el sector recreativo y área verde más cercano de la zona; en gran parte esto determina que solo el 43% de los habitantes consideren el aire que respiran como aire de calidad.

4. Aplicación del Método de Precios Hidrónicos

2.1 Análisis Comparativo de los Residenciales

17 Anexo: “Características de Localización”
Para lograr una mejor apreciación del la influencia de la calidad ambiental en la valoración de los bienes inmuebles, se realizó una comparación de las características particulares de las viviendas ubicadas y estudiadas de los residenciales.

Comenzaremos analizando las características estructurales de los inmuebles; en principio los inmuebles de Villa Fontana son diseños exclusivos con una construcción que oscila entre 200 a 300 metros cuadrados a diferencia de los vistos en Rubenia que son residenciales homogéneos que también oscilan en este mismo rango, pero con una diferencia de distribución de 16 punto porcentuales. Por lo que en una forma concreta la diferencia entre los inmuebles es notable.

En cuanto a las construcciones de los inmuebles realizadas en la extensión de los terrenos, en ambos residenciales predomina la utilización de bloques y zinc para la elaboración de la parte estructural de la vivienda, con un número promedio de cuartos y baños de 4 y 2 respectivamente, de la muestra total, al igual que la utilización de una parte de la propiedad destinada a un jardín, un garaje y un porche, en muy similares proporciones. Sin embargo, el área de construcción de las viviendas presenta una gran diferencia siendo las viviendas de Rubenia 10% menores que la existencia en el residencial Villa Fontana.

Respecto a las características del vecindario y acceso que las zonas de muestra, el residencial Villa Fontana y Rubenia, presentan son muy similares en cuanto a la cercanía de servicios y centros recreativos, las cuales se ajustan a las condiciones sociales de la población. Refiriéndonos a los servicios básicos prestados en cada uno de ellos Villa Fontana presenta una ventaja del 42% en cuanto a la distribución y calidad de los mismos en relación con los prestados en el residencial Rubenia.

Cabe destacar que a pesar de la creciente ola de violencia que se presenta en Villa Fontana esta es considerada por sus habitantes una zona segura, por 32 punto porcentuales más que Rubenia en la cual sus habitantes la consideran poco segura; atribuyendo tal fenómeno a los creciente asentamiento ubicados en la cercanías del residencial.

Además a través del estudio se logró clasificar a Villa Fontana como una zona tranquila debido a que en ella no existe ningún tipo de industria a diferencia de Rubenia que se considera una zona con contaminación sonora debido a la existencia de vías muy transitadas, pequeñas industrias, vendedores ambulantes y sin contar con la basura generada por estos últimos.

Algo un poco más significativo es la consideración realizada por los habitantes de las zonas en cuanto a la calidad del aire que respiran, en donde sale a relucir que los habitantes de Villa Fontana consideran el aire que respiran como uno de calidad a diferencias de los habitantes de Rubenia.

2.2 Precision del Modelo de Precios Hedónicos

El principal objetivo de este trabajo es aplicar el Método de Precios Hedónicos en la evaluación del efecto de la calidad ambiental sobre el precio de los inmuebles localizados en los residenciales de Villa Fontana y Rubenia, utilizando la información del precio de venta de los bienes inmuebles.

Dentro de esa perspectiva, se busca definir un modelo de precios hedónicos, que de un conjunto de variables que mejor delimiten las principales características estructurales de los inmuebles habitacionales objetos del presente estudio y otro que esas variables seleccionadas conjugadas con las de calidad ambiental, sean las que mejor expliquen los valores de estos inmuebles.

En este sentido sección del trabajo tiene por objetivo describir el modelo general y respectiva forma funcional, así como el resultado de cada una de las variables independientes y su influencia en la determinación de la valoración de los inmuebles.
En función de lo antes mencionado, el modelo económico definido en el presente estudio puede ser expresado de la siguiente manera:

\[Pr = F(\text{Estructura, Localización, Ambiente}) \]

El modelo incluye una variable dependiente definida como el precio, siendo cinco variables relacionadas con las características estructurales de los inmuebles, tres con las características de localización y dos variables ambientales especificadas.

Precio: precio correspondiente al valor de venta ($/m^2), proporcionado por los habitantes de inmueble.

Localización: referente a la accesibilidad de los servicios y la calidad del los mismos ($/m^2, cercanía de los servicios y accesos).

Estructura: en cuanto a la extensión, construcción y utilización del espacio físico ($/m^2)

Ambiente: variables ambientales, relacionadas con la calidad ambiental del entorno de la vivienda y la cercanía a la misma ($/m^2).

Se ha establecido un Coeficiente \(F_c = 0.7 \) el cual representa la disposición a pagar por los bienes ambientales con respecto a la calidad que presentan, en cuanto a los demandantes de los inmuebles.

A través de estos pequeños supuestos podemos llegar a plantear la función que nos permita evaluar el precio de los bienes inmuebles de estos residenciales, mediante las variables antes mencionadas, en la siguiente fórmula:

\[Pr = 249E + 34L + (0.72A) \]

\(Pr \) = Precio de los bienes inmuebles ubicados en los residenciales
\(E \) = Construcción m\(^2\)
\(L \) = Distancia de los Servicios y Accesos en metros
\(A \) = Bienes ambientales por m\(^2\)

2.3 Comparación de Precios

Durante el estudio se han evaluado una cantidad de variables consideradas como las determinantes del precio de los bienes inmuebles de las zonas muestras.

Antes de comenzar a analizar el papel de estas variables tenemos que tomar en cuenta que solo el 24\% de los entrevistados en Villa Fontana considera la influencia de la calidad ambiental sobre el precio de su vivienda a diferencia del 56\% de los encuestados en Rubenia; en general solo el 40\% del total de la población encuestada toma en cuenta las características ambientales del entorno para valorara su vivienda.

Otra observación a considerar es que a través de nuestro estudio hemos determinado que el Residencial Villa Fontana presenta mejores condiciones ambientales en cuanto a los niveles de ruido, la calidad del aire percibida por sus habitantes y la cercanía de los bienes inmuebles ha áreas verdes en relación a estos mismos servicios y bienes ambientales existentes en el Residencial Rubenia; por lo que determinaremos mediante una simple colación de precios de las viviendas el valor de obtener estas mejores condiciones ambientales.
En vista de lo antes mencionado y otros variables ambientales solo el 27% de la influencia sobre los precios de los bienes inmuebles se considera que es debido a las características relacionadas con la calidad ambientales del entorno estudiado, el restante 30% y 43% se le adjudica a características de localización y características estructurales, respectivamente, estas últimas son las que percibe el consumidor con mayor prontitud, para dar un valor al bien inmueble.

La existencia de diferencias ambientales entre los asentamiento poblacionales como es el caso de el Residencial Villa Fontana y el Residencial Rubenia nos permiten distinguir el valor arbitrario de la calidad ambiental que existe en ellos a partir del precios de los bienes inmuebles existentes.

Para poder ver esta particularidad de la valoración de una forma más clara, la cual puede ser realizada por los consumidores de estos bienes inmuebles hasta inconscientemente, compararemos los precios de las viviendas estudiadas para diferenciar la cantidad monetaria que están dispuestos a pagar estos por obtener mejores condiciones ambientales alrededor o en su hogar.

A demás esta valoración nos permitirá, al menos, conocer el valor subjetivo de los bienes y servicios naturales que se en encuentran en la zona, demostrar así que estos recursos son de vital importancia en el desarrollo de vida humana.
Valoración de los Bienes Inmuebles

Al tomar en cuenta todo lo antes mencionado, podemos ver a través de los precios promedios de las viviendas de los resideneciales la diferencia de valor de cada una de ellas, siendo que las viviendas del Residencial de Villa Fontana tienen un valor más alto que las existentes en Rubenia debido a ciertas condiciones de estructura, localización y el objeto de nuestro estudio la calidad ambiental de la zona, diferencia que equivalente a 74,760 miles de dólares.

De este valor diferencial podemos encontrar la cantidad monetaria que están pagando los habitantes de Villa Fontana por mejores condiciones ambientales que las existentes en Rubenia la cual corresponde a 18,170 miles de dólares, excluyendo un margen de la influencia estructural y de localización que atribuyen los habitantes a sus viviendas.

Sin embargo, al analizar la disposición de los habitantes de este sector o mejor dicho la consideración de estos mismos de la influencia de la calidad ambiental que existe a su alrededor sobre el precio de sus bienes inmuebles este valor se reduciría a tan solo 12,719 mil dólares.

Esta diferencia de valores es debido a que las características estructurales y de localización de la vivienda son las que se perciben con mayor facilidad y son también las que más consideran los consumidores de bienes inmuebles al adquirir una vivienda, es por eso que también decimos que los consumidores un valor a la calidad ambiental casi inconscientemente.

III. Conclusiones

A pesar de las limitaciones en los datos disponibles, los resultados revelan que la calidad ambiental y la disponibilidad de la misma constituyen un importante factor determinante en el precio de las viviendas; a través de estas consideraciones podemos llegar a las siguientes conclusiones:

La calidad ambiental y la disponibilidad de los servicios y bienes ambientales es un importante indicador de bienestar y desarrollo humano. En este trabajo se ha presentado una aplicación del
método de los precios hedónicos para obtener una valoración de la calidad ambiental en una relación entre el Residencial Villa Fontana y el Residencial Rubenia.

El resultados de las comparaciones de las zonas y la influencia de las variables tomadas como referencia bajo la perspectiva del mercado inmobiliario, se puede concluir que en la determinación del valor del inmueble influyen otras variables como son las ambientales entre la que se pueden mencionar los niveles de ruido, la calidad del aire, la cercanía de áreas verdes, entre otras las cuales deben de ser llevadas a consideración y no apenas la calidad o el tipo de construcción, el área construida, el valor unitario del metro cuadrado, los servicios públicos y el sector en el que se localiza el inmueble.

Se ha logrado observar que en la valoración de estos bienes inmuebles, por parte de los habitantes de las zonas de estudio priorizan las características estructurales con el 43% en un segundo plano las características de localización con el 30% dejando en un último plano las características ambientales de la zona con el 27%.

Otro aspecto importante es que la consideración de estos consumidores referente a la influencia que tiene la calidad ambiental sobre el precio de sus viviendas solo equivale al 40%; significando que la mayoría de la población no toma en consideración este aspecto, sin embargo, tenemos que decir que todas las personas que eligen un lugar donde vivir toman en cuenta la tranquilidad del sector, el ruido que se genera, si existe contaminación, lo que quiere decir que le dan un valor, monetario, a los aspectos ambientales que rodean su hogar.

Debido a las consideraciones que realizan los habitantes de los sectores estudiados y las características distinguidas entre ello se logro valorar a la calidad ambiental en términos monetarios, en 10,856 mil dólares del valor promedio diferencial entre las viviendas del sector; siendo este valor mínimo considerando el aporte que realizan los bienes y servicios ambientales.

3.5 ESQUEMAS DE PAGOS DE BIENES Y SERVICIOS AMBIENTALES

Los métodos de Valoración Económica Ambiental están dirigidos a la cuantificación de los bienes y servicios ambientales, para tal fin vamos a definir ambos conceptos para entender sus similitudes y diferencias, y aplicar las técnicas adecuadas.

DEFINICION DE BIENES Y SERVICIOS AMBIENTALES

Bienes Ambientales son todos aquellos que obtenemos directamente de la Naturaleza para satisfacer necesidades. Tales como productos alimenticios y medicinales e insumos, generalmente tienen precio y están en los mercados convencionales.

Servicios Ambientales son Aquellos que brindan fundamentalmente, pero no exclusivamente, las áreas silvestres (como bosques, pantanos, humedales, arrecifes, manglares, llanuras, y sabanas), las áreas que en su conjunto conforman ecosistemas, paisajes, cuencas hidrográficas y eco-regiones. Tienen valor porque ocupan un lugar en las funciones de consumo y producción de la sociedad, pero no tienen precio ni mercado definido.
Como podemos analizar en procesos económicos y en los actos de consumos existen externalidades positivas y negativas cuyo problema fundamental radica en su no cuantificación e internalización en el sistema económico, para tal fin, la Economía Ambiental ha desarrollado métodos y técnicas para la valoración de estas externalidades y para la inclusión de los bienes y servicios ambientales en los mercados. Estas propuestas nos llevan a considerar esquemas de pagos por servicios ambientales que nunca han sido pagados por la sociedad a pesar que se recibe de ellos satisfacción de necesidades tales como la recreación, el agua, el oxígeno, etc.

A continuación presentamos una propuesta de esquema de pagos por servicios ambientales:

ESQUEMA DE PAGO POR SERVICIOS AMBIENTALES

<table>
<thead>
<tr>
<th>Servicios</th>
<th>El País</th>
<th>El Mundo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigación CO₂</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Protección de agua</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Protección de biodiversidad</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Belleza escénica</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oferta</th>
<th>Demandada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servicios ambientales privados y no privados</td>
<td>Servicios ambientales privados y no privados</td>
</tr>
</tbody>
</table>

ECOSISTEMA

- Pago a propietarios
- Cobro a consumidores (tarifas)
- Comisión de servicios ambientales
CAPITULO IV

EVALUACION DE IMPACTO AMBIENTAL EN ACTIVIDADES Y PROYECTOS ECONOMICOS

Objetivo: Conocer y aplicar las técnicas del proceso de Evaluación de Impacto Ambiental desde la perspectiva de la Gestión Integral de Riesgos y Desastres, y reconocer la importancia de incluirlo en la formulación y evaluación de proyectos.

Introducción:

Las condiciones de política requieren información y aunque la disponibilidad de información apropiada no significa, en forma automática, que las decisiones sean buenas, su no disponibilidad casi siempre contribuirá a tomar decisiones erróneas. Existe una variedad de estructuras diferentes con el fin de presentar y generar información útil para los diseñadores de políticas, las cuales exigen diferentes habilidades y procesos de investigación. Antes de concentrarse en el análisis de costo-beneficio, brevemente se repasara lo más importante de estos aspectos.

"Impacto" es una palabra muy general, que se refiere a los efectos de cualquier política vigente o propuesta. Puesto que existen muchas clases de efectos, hay muchos tipos diferentes de análisis de impacto. Este capítulo se concentra en dos de ellos: los impactos ambientales y los impactos económicos.

Un análisis de impacto ambiental (AIA) es básicamente la identificación y estudio de todas las repercusiones ambientales significativas que se generan a partir de una actividad. En su mayor parte esta se concentra en los impactos que puedan surgir de una decisión propuesta, aunque en, retrospectiva, los EIA son también de gran valor, especialmente cuando se realizan para asegurar que los pronósticos anteriores hayan sido precisos. Los EIA pueden llevarse a cabo para cualquier acción social, pública o privada, industrial o doméstica, local o nacional. Son parte importante del trabajo de los científicos naturales, quienes se concentran en el rastreo y descripción de los impactos físicos de proyectos o programas, siguiendo, en particular los complejos vínculos que diseminan estos impactos a través del ecosistema. Los científicos no apuntan directamente a establecer los valores sociales a estos impactos.

Muchos países poseen leyes que requieren estudios de impacto ambiental para la realización de programas y proyectos públicos de importancia, así como para algunos proyectos privados. En
EEUU la Nacional Enviromental Policy Act of (NEPA) exige que las entidades del gobierno federal realicen evaluaciones del impacto ambiental de la legislación propuesta y “otras importantes acciones federales que afectan en forma significativa la calidad del entorno humano”. Con el paso de los años esta ley se ha ampliado para incluir cualquier acción financiada parcialmente o regulada por el gobierno federal, aunque la ejecución partes privadas. El resultado de la evaluación es un informe de impacto ambiental (IIA). Los IIA proporcionan información sobre los siguientes temas:

- Una descripción del impacto ambiental de la acción propuesta.
- Cualquier efecto ambiental adverso que no se pueda evitar si se implementase la propuesta.
- Alternativas a la acción propuesta.
- La relación entre usos de corto plazo del ambiente por el hombre y el mantenimiento y mejoramiento de la productividad a largo plazo.
- Cualquier compromiso irreversible e irrecuperable de los recursos posiblemente involucrados en la acción propuesta.

La NEPA también creó el council on Environmental quality (consejo de calidad ambiental), una entidad ambiental ejecutiva cuyo trabajo consiste en manejar el proceso de los IIA publicar un informe anual sobre el estado del ambiente.

Aunque los IIA básicamente son el trabajo de los científicos naturales, la economía también tiene una información específica que desempeñar. No son los vínculos ecológicos los únicos a través de los cuales se diseminen los impactos ambientales; estos también se difunden a través de vínculos económicos. Supóngase por ejemplo, se propone construir una represa que inundar cierto valle, aunque suministrara nuevas posibilidades recreativas acuáticas. La inundación provocara una parte considerable del impacto ambiental, será responsable de las pérdidas animales y plantas de la creación en un área silvestre. Sin embargo, muchos impactos también pueden surgir de los cambios en los patrones de comportamiento de las personas por el proyecto. El nuevo desarrollo urbanístico o comercial, estimulado por las oportunidades de recreación, puede tener efectos ambientales negativos. Por tanto completo de los impactos ambientales de la represa es necesario no solo incluir los efectos físicos de la construcción y su embalse, sino también la forma como las personas reaccionaran y se adaptaran a este nuevo medio.

4.1 CONCEPTOS:

Impacto Ambiental
Cualquier alteración significativa positiva (beneficiosa) o negativa (dañina) de uno o más de los componentes bióticos, abióticos, socioeconómicos, culturales y estéticos del ambiente.

CARACTERÍSTICAS DE LOS IMPACTOS

- Inmediatos / Posteriores
- Directos / Indirectos
- Reversibles / Irreversibles
- Acumulativos

PROBABILIDAD DE LOS IMPACTOS

- Posible
Poco probable

Altamente probable

Casi seguro

CLASIFICACIÓN DE LOS IMPACTOS

• POR EL CÁRACTER
 Positivo: Son aquellos que significan beneficios ambientales, tales como acciones de saneamiento o recuperación de áreas degradadas.

 Negativos: son aquellos que causan daño o deterioro de componentes o del ambiente.

• POR LA RELACIÓN CAUSA – EFECTO
 Primarios: son aquellos efectos que causa la acción y que ocurren generalmente al mismo tiempo y en el mismo lugar de ella; a menudo éstos se encuentran asociados a fases de construcción, operación, manutención de una instalación o actividad y generalmente son obvios y cuantificables.

 Secundarios: son aquellos cambios indirectos o inducidos en el ambiente. Es decir, los impactos secundarios cubren todos los efectos potenciales de los cambios adicionales que pudiesen ocurrir más adelante o en lugares diferentes como resultado de la implementación de una acción.

• POR EL MOMENTO EN QUE SE MANIFIESTAN:
 Latente: aquel que se manifiesta al cabo de cierto tiempo desde el inicio de la actividad que lo provoca.

 Inmediato: aquel que en el plazo de tiempo entre el inicio de la acción y el de manifestación es prácticamente nulo.

 Momento Crítico: aquel en que tiene lugar el más alto grado de impacto, independiente de su plazo de manifestación.

• POR LA INTERRELACIÓN DE ACCIONES Y/O ALTERACIONES:
 – Impacto simple: aquel cuyo impacto se manifiesta sobre un sólo componente ambiental.

 – Impactos acumulativos: son aquellos resultantes del impacto incrementado de la acción propuesta sobre algún recurso común cuando se añade a acciones pasadas, presentes y razonablemente esperadas en el futuro.

• POR EL MOMENTO EN QUE SE MANIFIESTAN:
 Latente: aquel que se manifiesta al cabo de cierto tiempo desde el inicio de la actividad que lo provoca.
Inmediato: aquel que en el plazo de tiempo entre el inicio de la acción y el de manifestación es prácticamente nulo.

Momento Crítico: aquel en que tiene lugar el más alto grado de impacto, independiente de su plazo de manifestación.

• POR LA EXTENSIÓN:
 – Puntual: cuando la acción impactante produce una alteración muy localizada.
 – Parcial: aquel cuyo impacto supone una incidencia apreciable en el área estudiada.
 – Extremo: aquel que se detecta en una gran parte del territorio considerado.
 – Total: aquél que se manifiesta de manera generalizada en todo el entorno considerado.

• POR LA PERSISTENCIA:
 – Temporal: aquel que supone una alteración no permanente en el tiempo, con un plazo de manifestación que puede determinarse y que por lo general es corto.
 – Permanente: aquel que supone una alteración indefinida en el tiempo

• POR LA CAPACIDAD DE RECUPERACIÓN:
 Irrecuperable: cuando la alteración del medio o pérdida que supone es imposible de reparar.
 Irreversible: aquel impacto que supone la imposibilidad o dificultad extrema de retornar, por medio naturales, a la situación anterior a la acción que lo produce.
 Reversible: aquel en que la alteración puede ser asimilada por el entorno de forma medible, a corto, medio o largo plazo, debido al funcionamiento de los procesos naturales.

Magnitud de los Impactos: Puede medirse a través de un juicio de valor basado en el costo social de dicho impacto. Por lo tanto la consulta pública enriquece el análisis de los impactos.

Estimaciones anticipadas de la significancia de los impactos:

• Magnitud de la operación y los cambios potenciales
• Estándares existentes, leyes y reglamentos (de contaminación, conservación y recursos)
• Fragilidad y singularidad de las áreas afectadas
• Contexto de la política
• Cantidad o tipo de población afectada y sus preocupaciones (preocupaciones sociales)
• Uso de los recursos y sus relevancias (costos de mitigación).

INFORMACIONES NECESARIAS SOBRE EL AMBIENTE PARA ESTABLECER LAS CONDICIONES BÁSICA:
• Estado actual;
• Tendencias actuales y esperadas;
• Efectos de propuestas que ya están en implementación ;
• Efectos de propuestas que aún no han sido implementadas.

Evaluación de Impacto Ambiental
Proceso administrativo y técnico destinado a incorporar la variable ambiental dentro del ciclo del desarrollo de proyecto.

Estudio de Impacto Ambiental
Conjunto de actividades técnicas y científicas destinadas a la identificación, predicción y control de los impactos ambientales positivos y negativos de un proyecto y sus alternativas, presentado en forma de informe técnico y realizado según los criterios establecidos por los reglamentos y las guías técnicas facilitadas por MARENA.

Programa de Gestión Ambiental
Conjunto de planes y sus respectivas acciones para que un proyecto sea realizado según los principios de protección del ambiente, establecidos en el Permiso Ambiental.

Plan de Gestión Ambiental
Conjunto de medidas a ser implementadas para la mitigación o prevención del impacto ambiental de un proyecto, definiendo su diseño, tiempo de aplicación, responsables de su aplicación e indicadores de monitoreo.

4.2 **ORIGEN HISTORICO DE LA EVALUACION DE IMPACTO AMBIENTAL.**

En América Latina se inicia en países de fuertes economías: Colombia, Venezuela, México, Brasil

En Centroamérica, se establece a finales de los ochenta e inicios de los 90s.

Todos los sistemas de EIA en Centroamérica han entrado en operación en dos fases diferentes:

La Fase Previa a la Ley (con excepción de Guatemala que inició sus operaciones por ley en 1986). La Fase Posterior a la promulgación de la Ley del Ambiente en cada país.

Esta situación trae consecuencias sobre la forma de aplicación de los sistemas de EIA cuando se comparan los diferentes países.

Las leyes ambientales en Centroamérica

Las leyes ambientales que dan origen a la Fase Posterior ("ex – post") de los sistemas de EIA, se van promulgando de manera desfasada en los distintos países de la región.

En Guatemala, como ya se mencionó, la Ley de Protección y Mejoramiento del Medio Ambiente se promulga en 1986 y en el año 2000 se hacen reformas a la Ley del Organismo Ejecutivo. En Belice
es el decreto de Protección Ambiental de 1992 el que viene a legislar en relación con el sistema de EIA.

Estas diferencias de tiempo generan distintos enfoques en cada ley, en cuanto a sus objetivos, prioridades, experiencias, idiosincrasia y otros aspecto

4.3 LA GESTION AMBIENTAL EN NICARAGUA

El asidero legal y conceptual más reciente para la gestión ambiental en Nicaragua lo constituye la Ley General del Medio Ambiente y los Recursos Naturales (Ley 217) de 1996. En el artículo 5 de esta ley se introduce la siguiente definición de “Ambiente”:

“Es el SISTEMA de elementos bióticos, abióticos, sociales, económicos, culturales y estéticos que interactúan entre sí, con los individuos y con la comunidad en la que viven determinando su relación y sobrevivencia. Estos elementos son modificados por el ser humano.”

El concepto de Gestión Ambiental

Es pertinente entender la gestión ambiental como el conjunto de actividades o mecanismos que permiten el uso y aprovechamiento de los recursos naturales a través de acciones destinadas a: La conservación, El mejoramiento y la La rehabilitación.

También se incluye dentro de la gestión ambiental, el monitoreo y la evaluación de impacto ambiental.

Gestión ambiental es

La administración del uso y manejo de los recursos ambientales mediante acciones, medidas económicas, inversiones, procedimientos institucionales y legales para mantener o recuperar y mejorarla calidad del medio ambiente, disminuir la vulnerabilidad, asegurar la productividad de los recursos y el desarrollo sostenible.

¿Quién hace gestión ambiental en Nicaragua?

En Nicaragua, las leyes establecen roles bien definidos para cada actor de la sociedad y estos actores deben ejercer sus derechos y responsabilidades conforme al mandato legal que les corresponde.

En el nivel central, están llamados a participar en la gestión ambiental las siguientes entidades:

El Ministerio del Ambiente y Recursos Naturales (MARENA), como ente rector de la gestión ambiental.

La Procuraduría del Ambiente.
La Contraloría General de la República.
La Policía Nacional.

Los distintos sectores gubernamentales, que incorporan los principios de gestión ambiental en sus políticas y planes sectoriales.

La sociedad civil, que cuenta con espacios de participación incluso por ley (Constitución de la República, Ley General del Ambiente, Ley 40).

En el nivel local, están facultados para hacer gestión ambiental las alcaldías, los municipios, los gobiernos regionales, la sociedad civil, las delegaciones del MARENA, y las delegaciones de otros entes de gobierno.

4.4 EL SISTEMA DE EVALUACIÓN DE IMPACTO AMBIENTAL

El Sistema de Evaluación de Impacto Ambiental de Nicaragua viene funcionando desde 1994, a partir de la promulgación del Reglamento 45-94 y de la creación de la Dirección de Control Ambiental en el Ministerio de Ambiente y Recursos Naturales (MARENA).

El Reglamento 45-94, estableció el sistema de permisos y evaluación de impacto ambiental, haciendo obligatorio para los proyectos que apareciesen en la lista taxativa, el cumplir con el estudio de impacto ambiental para obtener un permiso. Los costos de estos trámites los paga el proponente o dueño del proyecto.

Actualmente El sistema de evaluación de impacto ambiental esta regido por el Decreto 76-2006 que tiene por objeto, establecer las disposiciones que regulan el Sistema de Evaluación Ambiental de Nicaragua.

Ámbito de aplicación. Este Decreto es aplicable a:

1. Planes y Programas de Inversión Sectoriales y Nacionales, de conformidad con el artículo 28 de la Ley No. 290, Ley de Organización, Competencias y Procedimientos del Poder Ejecutivo.

2. Actividades, Proyectos, Obras e Industrias sujetos a realizar Estudios de Impacto Ambiental.

En el artículo 3 de este decreto se establecen los principios rector del mismo: “Principios. Sin perjuicio de los Principios establecidos en la Ley No. 217, Ley General del Medio Ambiente y los Recursos Naturales y los demás principios establecidos en los instrumentos de gestión ambiental, el presente Decreto se rige por los siguientes principios”:

“1. Principio de Prevención. La administración pública de Nicaragua, la ciudadanía en general y la gerencia, administración o representante legal de las actividades, proyectos, obras e industrias regulados en este Decreto, deberán prevenir y adoptar medidas eficaces para enfrentar e impedir daños graves e irreversibles al medio ambiente, asumiendo el dueño del proyecto el costo de implementar las medidas de mitigación y restauración.

3. Principio de Participación Ciudadana. El sistema de Evaluación Ambiental considera en todos sus niveles la participación ciudadana debidamente informada. En el caso de las Regiones Autónomas, la participación ciudadana se desarrollará de acuerdo a sus costumbres y tradiciones locales.

18 Publicado en La Gaceta(Diario oficial) No. 248 del 22 de diciembre de 2006.
4. Principio de el que contamina, paga. Las personas naturales y jurídicas, nacionales y extranjeras, públicas y privadas que causen daños al medio ambiente, deben restaurar, pagar y compensar los daños causados, prevaleciendo lo que establece el principio de prevención.

5. Principio de inclusión proactiva. En el proceso de Evaluación Ambiental todos los actores y decisores se involucran.

6. Principio de responsabilidad compartida. Mediante el cual, el Estado y la ciudadanía, empresas y proyectos en alianza estratégica, unen esfuerzos para la prevención y mitigación de los impactos al ambiente, por medio de una decisión concertada.

7. Principio de la conectividad ecológica. El mantenimiento y restauración de la conectividad ecológica, especialmente entre áreas naturales protegidas y otros nodos de dispersión, formará parte del enfoque conceptual y de contenido en todo proceso de Evaluación Ambiental.

Además en Art. 4 se establecen las siguientes definiciones:

1. Actividades: Conjunto de operaciones o tareas propias de una persona o entidad. Las actividades pueden ser asiladas o formar parte de un proyecto. También pueden ser actividades simples o complejas.

2. Alto impacto ambiental potencial: Impacto ambiental potencial preestablecido de forma aproximada que considera un alto riesgo para el medio ambiente obtenido a partir de considerar actuaciones similares que ya se encuentran en operación.

3. Área de influencia del Proyecto: El área de influencia de un proyecto se refiere a todo el espacio geográfico, incluyendo todos los factores ambientales dentro de él, que pudieran sufrir cambios cuantitativos o cualitativos en su calidad debido a las acciones en la ejecución de un proyecto, obra, industria o actividad.

4. Autorización Ambiental: Acto administrativo emitido por las Delegaciones Territoriales del MARENA para la realización de proyectos de categoría ambiental III. En el caso de las Regiones Autónomas le corresponderá a los Consejos Regionales e instancias autónomas que estos deleguen en el ámbito de su circunscripción territorial.

5. Bajo impacto ambiental potencial: Impacto ambiental potencial preestablecido de forma aproximada que considera un bajo riesgo para el medio ambiente obtenido a partir de considerar actuaciones similares que ya se encuentran en operación.

6. Calidad ambiental: Es la expresión final de los procesos dinámicos e interactivos de los diversos componentes del sistema ambiental y se define como el estado del ambiente, en determinada área o región, según es percibido objetivamente, en función de la medida cualitativa de algunos de sus componentes, en la relación a determinados atributos o también ciertos parámetros o índices con relación a los patrones llamados estándares.

7. Consultores: Son aquellas personas naturales o jurídicas, debidamente certificadas por la Dirección General de Calidad Ambiental y los Consejos Regionales e instancias autónomas que estos deleguen, habilitadas oficialmente para elaborar Evaluaciones de Impacto Ambiental o en su defecto Evaluaciones Ambientales.

8. Dictamen: Acto administrativo emitido por MARENA e instancias regionales de las Regiones Autónomas (Comisión de Recursos Naturales y Ambiente y Secretaría de Recursos Naturales y Ambiente), previa formulación de un equipo técnico interinstitucional e interdisciplinario y que es producto de la revisión y análisis de un estudio de impacto ambiental presentado por el proponente que contiene los fundamentos técnicos para el otorgamiento de un permiso ambiental o la negativa del mismo.
9. **Documento de Impacto Ambiental (DIA):** Documento preparado por el equipo multidisciplinario, bajo la responsabilidad del proponente, mediante el cual se da a conocer a la autoridad competente, autoridades regionales, municipales y población interesada, los resultados y conclusiones del Estudio de Impacto Ambiental, traduciendo las informaciones y datos técnicos en un lenguaje claro y de fácil comprensión.

10. **Estudio de Impacto Ambiental (EIA):** Conjunto de actividades técnicas y científicas destinadas a la identificación, predicción y control de los impactos ambientales de un proyecto y sus alternativas, presentado en forma de informe técnico y realizado según los criterios establecidos por las normas vigentes, cuya elaboración estará a cargo de un equipo interdisciplinario, con el objetivo concreto de identificar, predecir y prevenir los impactos al medio ambiente.

11. **Evaluación Ambiental (EA):** Proceso compuesto de actos administrativos que incluye la preparación de estudios, celebración de consultas públicas y que concluyen con la autorización o denegación por parte de la Autoridad competente, nacional, regional o territorial. La Evaluación Ambiental es utilizada como un instrumento para la gestión preventiva, con la finalidad de identificar y mitigar posibles impactos al ambiente de planes, programas, obras, proyectos, industrias y actividades, de conformidad a este Decreto y que incluye: la preparación de Estudios, celebración de consultas públicas y acceso a la información pública para la toma de decisión.

12. **Evaluación Ambiental Estratégica (EAE):** Instrumento de la gestión ambiental que incorpora procedimientos para considerar los impactos ambientales de planes y programas en los niveles más altos del proceso de decisión, con objeto de alcanzar un desarrollo sostenible.

13. **Fragilidad:** Se define como Blandura, Inestabilidad, Debilidad o delicadeza de un territorio y en donde las acciones humanas pueden causar altos impactos ambientales potenciales.

14. **Impacto Ambiental:** Cualquier alteración significativa positiva negativa de uno o más de los componentes del ambiente provocados por la acción humana y/o por acontecimientos de la naturaleza en un área de influencia definida.

15. **Impacto Ambiental Acumulativo:** Es el impacto sobre el medio que resulta cuando a los efectos ocasionados por las actividades, obras o proyectos se añaden los efectos ocasionados, por otros proyectos obras o actividades presentes o futuras razonadamente previsibles, sin que importe qué otro organismo público o persona los han ejecutado. Los impactos acumulados pueden ser resultado de actuaciones de menor importancia vistos individualmente, pero son significativas en su conjunto y ocurren durante un período de tiempo.

16. **Impacto Ambiental Potencial:** Cualquier alteración positiva o negativa probable que podría ocasionar la implantación de un proyecto, obra, actividad o industria sobre el medio físico, biológico y humano. El impacto ambiental potencial puede ser preestablecido de forma aproximada tomando en consideración. El riesgo que se obtiene a partir de considerar actuaciones similares que ya se encuentran en operación. El Impacto Ambiental Potencial permite clasificar los proyectos, obras, actividades o industrias en categorías según los efectos ambientales que estas actuaciones pueden generar.

17. **Industrias:** Instalación física donde se realizan un conjunto de operaciones materiales para la obtención, transformación o transporte de uno o varios productos naturales. Se considera producción industrial aquella que demandan servicios públicos e infraestructuras superiores a los que requieren las zonas de viviendas, depende de servicios complementarios fuera del entorno urbano, el uso no es compatible con la vivienda, genera empleo superior a las 30 personas, el volumen productivo depende de la tecnología y tiene requerimientos de espacios muy superiores a los de viviendas.
18. Línea de base: Conjunto de descripciones, estudios y análisis de algunos factores del medio ambiente físico, biológico y social que podría ser afectado por un proyecto. Los estudios de línea de base permiten obtener información del “estado del medio ambiente” antes de que se inicie ser evitados.

19. Medida de Mitigación: Acción o conjunto de acciones destinadas a evitar, prevenir, corregir o compensar los impactos negativos ocasionados por la ejecución de un proyecto, o reducir la magnitud de los que no puedan ser evitados.

20. Moderado impacto ambiental potencial: Impacto ambiental potencial preestablecido de forma aproximada que considera un mediano riesgo para el medio ambiente obtenido a partir de considerar actuaciones similares que ya se encuentran en operación.

21. Monitoreo: Medición periódica de uno o más parámetros indicadores de impacto ambiental causados por la ejecución de un proyecto, obra, industria o actividad.

22. Obras: Se entiende por Obra a todo proyecto de nueva construcción, donde la inversión está destinada a crear una infraestructura productiva, de servicio o de interés social. La definición de Obra no sólo incluye trabajos constructivos, sino que abarca también el proceso de instalación de maquinarias fijas a un sitio. Las obras se clasifican en:

22.1 Obras horizontales. Son proyectos que se desarrollan a través de una superficie territorial relativamente extensa, entre las que se encuentran: Carreteras y vías de comunicación, conductos, túneles, presas, canales, vías férreas, puertos, aeropuertos, explotación minera y de hidrocarburos, así como otros tipos de obras.

22.2 Obras verticales. Son proyectos que se desarrollan de forma puntal respecto a un territorio, entre los que se encuentran todo tipo de edificaciones, proyectos turísticos, industrias y demás infraestructuras.

22.3 Obras mixtas: Son aquellas que tienen indistintamente componentes horizontales (carreteras y otros), así como componentes verticales (edificios y otros). Son ejemplos de este tipo de obra las zonas francas, complejos industriales y de otra índole.

23. Permiso Ambiental: Es el acto administrativo que dicta la autoridad competente, a petición de parte, según el tipo de actividad de conformidad con el artículo 2 del presente Decreto, el que certifica que desde el punto de vista de la protección del ambiente, la actividad se puede realizar bajo condicionamiento de cumplir las medidas establecidas en dicho permiso.

24. Plan de Monitoreo: Son acciones de medición para la regulación, control mediante la implementación de un sistema de vigilancia que permita verificar la efectividad de la aplicación de las medidas ambientales y corregir oportunamente las desviaciones que se produzcan.

25. Proceso Tecnológico: Agrupa el conjunto de operaciones, instalaciones, medios, flujos, máquinas e instrumentos para transformar una materia prima en un producto terminado.

26. Producción Industrial: Conjunto de operaciones materiales ejecutadas para la obtención, transformación o transporte de uno o varios productos naturales. Se considera producción industrial aquella que demandan servicios públicos e
infraestructuras superiores a las que requieren las zonas de viviendas, depende de servicios complementarios fuera del entorno urbano, el uso no es compatible con la vivienda, genera empleo superior a las treinta personas, el volumen productivo depende de la tecnología y tiene requerimientos de espacios muy superiores a los de viviendas.

27. Producción Artesanal: Tipo de producción que demanda servicios públicos y espacios similares a los de la vivienda y genera empleo como máximo a treinta personas.

28. Proponente: Persona natural o jurídica, pública o privada, nacional o extranjera que propone la realización de un proyecto, obra, industria o actividad regulada en el presente Decreto y para ello solicita un permiso ambiental.

29. Proyectos: La definición de proyecto es mucho más amplia que la de Obra, pues la definición abarca:

29.1 Idea representada en perspectiva.

29.2 Planta y disposición que se forma para la realización de un tratado, o para la ejecución de algo de importancia.

29.3 Diseño o pensamiento de ejecutar algo.

29.4 Conjunto de escritos, cálculos y dibujos que se hacen para dar idea de cómo ha de ser y lo que ha de costar una obra de arquitectura o de ingeniería.

29.5 Primer esquema o plan de cualquier trabajo que se hace a veces como prueba antes de darle la forma definitiva (Incluye los proyectos de Leyes)

30. Proyectos Especiales: Tipología de proyectos que tienen alta significación económica y ambiental para el país y pueden incidir significativamente en una o más regiones ecológicas de Nicaragua, según el mapa de Ecosistemas oficial del país, o bien trasciende a la escala nacional, internacional, trasfronteriza, considerándose además como proyectos de interés nacional por su connotación económica, social y ambiental.

31. Reasentamiento de Población: Proceso de traslado de una población de un sitio hacia otro sitio, como consecuencia de afectaciones por eventos naturales, conflictos bélicos u otras causas.

32. Seguimiento y control: Conjunto de procedimientos que tienen como objetivo vigilar y controlar el nivel de desempeño ambiental. A los efectos de este decreto se refiere a vigilar y controlar el cumplimiento de las medidas y condicionantes emanadas del Permiso Ambiental o el Programa de Gestión Ambiental.

33. Tamizado o Cribado: Proceso técnico de selección o clasificación para determinar si se necesita o no un estudio de impacto ambiental para un proyecto, obra o actividad futura, valorando el impacto ambiental potencial. Este proceso identifica previamente si se debe realizar un estudio de impacto ambiental, una valoración ambiental o un análisis ambiental.

34. Términos de referencia: Documento técnico que describe el objetivo, contenido y alcance de un Estudio de Impacto Ambiental.

35. Zona Ambientalmente frágil: Espacio geográfico delimitado físicamente,

36. Valoración Ambiental: Proceso que identifica y valora los moderados Impactos Ambientales Potenciales que pueden generar ciertos proyectos y el dictamen se produce, sobre la base de valoraciones en el terreno, la normativa ambiental y las buenas prácticas, así como las medidas ambientales que serán adoptadas por el proponente del proyecto. Este proceso es aplicado por las autoridades ambientales territoriales y es apropiado para ciertos tipos de proyectos y contextos particulares, según la categorización ambiental de los proyectos.
37. Vulnerabilidad: Susceptibilidad de algo o alguien a recibir daño como consecuencia de una acción o peligro. A los efectos de este Decreto se refiere a susceptibilidad de un territorio a sufrir daños ambientales como consecuencia de una actividad, proyecto obra o industria.

En el art. 5 de dicho decreto se establece la Estructura del Sistema de Evaluación Ambiental. Se crea el Sistema de Evaluación Ambiental de Nicaragua, el cual está compuesto por:

1. La Evaluación Ambiental Estratégica.

2. La Evaluación Ambiental de Obras, Proyectos, Industrias y Actividades.

La Evaluación Ambiental de Obras, Proyectos, Industrias y Actividades está compuesta por categorías ambientales que son resultados de un tamizado o cribado. Las categorías ambientales son las siguientes:

a) Categoría ambiental I: Proyectos, obras actividades e industrias que son considerados como Proyectos Especiales.

b) Categoría ambiental II: Proyectos, obras, actividades e industrias que en función de la naturaleza del proceso y los potenciales efectos ambientales, se consideran como de Alto Impacto Ambiental Potencial.

c) Categoría ambiental III: Proyectos, obras, actividades e industrias, que en función de la naturaleza del proceso y los potenciales efectos ambientales, se consideran como de moderado Impacto Ambiental Potencial.

Además el decreto define las competencias y atribuciones institucionales para cada categoría, define los alcances y magnitudes de la Evaluación Ambiental Estratégica y la de proyectos, obras, actividades e industrias. Establece plazos, seguimiento y control del proceso, infracciones, sanciones y recursos administrativos, además la Normativa y Principios que rigen la consulta pública.

Importancia del EIA en el ciclo del proyecto

La Evaluación de Impacto Ambiental, constituye un término de doble carácter que se utiliza para:

- Describir el proceso jurídico – administrativo impuesto por un gobierno a las agencias públicas o privadas para aprobar, rechazar o modificar un proyecto o actividad desde su etapa de planeación.
- Como un proceso o método analítico que permite identificar y evaluar los impactos potenciales que puede provocar un proyecto, programa o actividad sobre el ambiente o recurso

Incorporar el sistema de EIA en el ciclo completo del proyecto, y no solo en las fase final de construcción, es muy importante porque facilita los siguientes aspectos:

Asegura que las opciones de desarrollo sean ambientalmente sustentables.
Garantiza que toda consecuencia ambiental sea identificada antes de ocurrir.

Analiza y selecciona las mejores opciones o medidas de prevención y control para evitar alteraciones al ambiente (diseño final del proyecto).

Prevé la puesta en marcha de mecanismos de monitoreo y vigilancia para asegurar que se implemente el Plan de Acción ambiental y todas sus medidas.

Permite ahorrar recursos en actividades de remediación ambiental.

Los métodos de evaluación de impacto ambiental

PRINCIPALES PROCEDIMIENTOS

El análisis debe girar en torno a cuatro puntos básicos:

1.- Identificación: Causa – Efecto
2.- Interpretación de los efectos ambientales
3.- Previsión de efectos ambientales
4.- Predicción o cálculo de los efectos y magnitud de los indicadores de impacto

En los EIA, se analizan los factores más frecuentemente relacionados con la alteración del medio físico a través de los vectores aire, agua y suelo. Es decir los referentes a la contaminación atmosférica, contaminación del agua y la degradación o alteración del suelo.

Se suele llamar vectores ambientales al aire, al agua y al suelo porque son los portadores de los efectos derivados de ciertas causas, que en último caso tienden a afectar a los seres vivos.

Hay diversas metodologías para auxiliar la identificación sistemática de impactos que requieren de análisis e investigación detallados.

Comprender “cómo” y “cuándo” cada metodología es apropiada para utilizarla como herramienta para la identificación de impactos y sus causas, es parte del proceso metodológico

Para realizar el proceso de EIA existen diversos mecanismos:

- Lista de Revisión o Lista de Control (check list).
- Listado de control simple.
- Listado de control descriptivo (cuestionarios).
- Listado de control ponderado (magnitud del impacto).
- Valor de tolerancia (analiza niveles de tolerancia).
- Métodos matriciales (simples y complejos).
- Superposición de Transparencias.
- Método del Instituto Batelle Columbus.
- Método Delphi: opinión de expertos.

El impacto Ambiental en la evaluación de proyectos

El análisis económico proporciona un marco dentro del cual pueden evaluarse todos los aspectos de un proyecto propuesto, de forma coordinada y sistemática.

El análisis detenido de un proyecto mostrará supuestos pocos ajustados a la realidad, o dudosos e indicará la forma de modificar el proyecto a fin de mejorar su capacidad para producir riquezas, o de aumentar los beneficios no económicos o no cuantificables que pueden esperarse obtener de él.
Un proyecto analizado y revisado detenidamente a la luz de un análisis económico tendrá probabilidades muchos mayores de ser ejecutado a tiempo y de rendir los beneficios previstos.

El cálculo de rendimiento o de la relación beneficio costo ofrece un índice útil de la capacidad de un proyecto para crear riqueza. El criterio de beneficio- costo puede constituir el valor actual máximo o de la razón de costo-beneficio, dado que tanto los beneficios como los costos se expresan en términos de valor actual. Si se va a calcular una razón de costo benefici, ésta puede adoptar varias formas diferentes. (Delp, 1987).

El análisis beneficio – costo identifica y pondera los costos frente a los beneficios, para evaluar tanto el mérito financiero como el económico de los proyectos de desarrollo. No obstante, los costos ambientales ocasionados por un proyecto pueden ser interiorizados en el análisis costo-beneficio.

El análisis beneficio-costo económico racionaliza el proceso de toma de decisiones, de tal manera que se logre una mejor asignación de los recursos limitados en el proceso de desarrollo. Se presta atención tanto a los impactos directos como a los indirectos en el proyecto, aparte de otra serie de factores que pueden ser tomados en cuenta para el cálculo y la evaluación. A menudo se puede indicar si hay efectos secundarios o una distribución desigual de los beneficios.

Los objetivos que son socialmente deseables pueden ser tratados explícitamente dentro de los criterios de la evaluación y, el empleo de una medida común (en unidades monetarias), hace posible la comparación de alternativas entre proyectos.

Actualmente los esfuerzos se dirigen a extender el análisis beneficio-costo para incluir el medio natural, incorporando las externalidades que se generen al desarrollar una alternativa de inversión.

Como hemos estudiado en capítulos anteriores las externalidades pueden ser benéficas o dañinas, en ambos casos el análisis beneficio- costo debe ser capaz de capturarlas explícitamente para que así se puedan apoyar las decisiones de inversión. (INCAE, 1993).

De esta forma se consideran aquellos aspectos que están relacionados con el agotamiento y/o degradación del capital natural. Así, sólo se aceptarán aquellos proyectos o actividades en los que el valor del daño ambiental es mínimo, o se pueden justificar por los retornos del proyecto cero o negativo. (INCAE, 1993).

4.5 RELACION BENEFICIO COSTO AMBIENTALMENTE AJUSTADO

El análisis beneficio-costo ha sido ampliamente utilizado para demostrar si un proyecto es económicamente viable. El ABC tradicional se amplía para internalizar las externalidades ambientales para lo cual, se requiere valorar los costos y los beneficios ambientales que se identifican con la implementación del proyecto.

La inclusión de los objetivos de sostenibilidad en los ABC, se hace manteniendo la estructura básica del beneficio-costo pero adicionando los efectos ambientales. De esta forma se obtiene la razón beneficio-costo B/C2 o razón beneficio costo ajustado.

Análisis del impacto económico.

Cuando el interés se concentra en como una acción determinada (una nueva ley, una nueva invención tecnológica, una nueva fuente de importaciones) afectara un sistema económico en su totalidad o en sus diversas partes, se puede hablar de análisis de impacto económico. En la mayoría de los países mas en aquellos que están en vías de desarrollo. Algunas veces la atención
estar en las ramificaciones de un programa público, en el seguimiento de determinadas variables económicas que se consideran importantes. Podría haber un especial interés, por ejemplo, en el impacto de una regulación ambiental en la tasa de empleo; en el impacto de las restricciones a las importaciones en la tasa de cambio tecnológico en una industria; en los efectos de una ley ambiental en el crecimiento de la industria para el control de la contaminación, en la respuesta de la industria de alimentos a las nuevas regulaciones de empaque, y así sucesivamente.

Un buen ejemplo de un análisis de impacto es un reciente estudio realizado por los economistas ambientales holandeses. En los países bajos existe un problema importante con la acidificación de los suelos, que resulta, en parte, de las emisiones industriales de dióxido de sulfuro (SO2) y oxígeno de nitrógeno (NOX). El objetivo de los investigadores era de rastrear los impactos de estas regulaciones en el sector agrícola. Ellos concluyeron que el programa de control llevaría a una disminución de los ingresos netos de la agricultura de un 35% durante el periodo 1995-2010, a una reducción en la cantidad de vacas lecheras, aumento en el crecimiento por res, a reducción en la cantidad de otros alimentos y a una disminución considerable en las cantidades de amoníaco provenientes del sector agrícola.

Los análisis de impacto económico pueden ser dirigidos a cualquier nivel. Los grupos ambientales locales podrían interesarse por el impacto de una ley de humedales en la tasa de crecimiento poblacional y en la base de impuestos de su comunidad. Los grupos regionales podrían interesarse por los impactos de una regulación nacional, de acuerdo con sus situaciones económicas particulares. A escala mundial, una pregunta importante consiste en saber cómo los esfuerzos para controlar las emisiones de CO2 podrían tener efectos en las tasas relativas de crecimiento de los países grandes y pobres cualquiera que sea el nivel, el análisis del impacto económico requiere un entendimiento básico de cómo funcionan las economías, y como se integran sus diversas partes.

Análisis Costo-Efectividad

En la economía ambiental es muy común contar con diversos tipos de análisis ambiental. Uno de estos análisis se denomina “costo-efectividad”. Este simplemente es un análisis en el cual se observa la manera económica de lograr determinada calidad ambiental o expresándolo en términos equivalentes, lograr el máximo mejoramiento de cierto objetivo ambiental para un gasto determinado de recurso. Supóngase que en una comunidad se estableció que su actual suministro de agua está contaminado con algún químico, y que se debe buscar alguna alternativa de suministro.

Supóngase que hay diversas posibilidades: se puede perforar nuevos pozos dentro de una acuífera no contaminada; instalar una ramificación al suministro de agua proveniente de una población vecina; o construir su propia represa de agua. Mediante un análisis costo-efectividad se calcularía los costos de estas alternativas con el objetivo de compararlas en términos de, por ejemplo, los costos por millón de galones de agua suministrada al sistema de acuerdo con la población. En otras palabras, en el análisis costo-efectividad esencialmente se supone que el objetivo ya está dado, y luego se calculan los costos de las diferentes alternativas para lograr ese objetivo. Se podría considerar como la mitad de un análisis de costo-beneficio en el que los costos, pero no los beneficios, se calculan en términos monetarios.

El análisis costo-efectividad se puede utilizar junto con el principio equimarginal, aplicado, en ese caso, a comparaciones mediante las diversas tecnologías de reducción de emisiones. Al organizar un programa efectivo de control, las autoridades deben escoger técnicas que tengan los menores costos marginales para esa reducción, y combinarlas de tal manera que satisfagan el principio equimarginal. Por supuestos, esto excluye el importante cuestionamiento previo. En este ejemplo. Que tanta reducción de CO2 es eficiente a la luz de daños causados por esas emisiones. Sin embargo, se puede observar que el problema de la eficiencia esta enlazado con el problema de costo-efectividad. No se puede resolver la cuestión de la eficiencia hasta no saber que costos de reducción de emisiones se va a generar, pero estos costos dependen del costo-efectividad de las técnicas particulares escogidas para reducir las emisiones.
Puede tener un sentido realizar un análisis de costo-efectividad aun antes de que exista un fuerte compromiso público con el objetivo en cuestión. En muchos casos, las personas pueden no saber de forma exacta en cuanto determinado esta en el objetivo. Una vez que se haya realizado un análisis de costo-efectividad, las personas pueden estar en capacidad de manifestar, por lo menos en términos relativos, si algunas de las alternativas pueden ser aconsejables. Pueden expresar algo como: “no sabemos exactamente cuánto beneficio en términos monetarios, pero sentimos que son mayores que los costos de varias de las alternativas que se han calculado; por tanto, continuaremos con una o dos de estas opciones.

Análisis costo-beneficio.

En el análisis costo-efectividad, los economistas se interesan solo en los costos para alcanzar determinada meta ambiental. En el análisis costo-beneficio, tanto los costos como los beneficios de una política o programa se miden y se expresan en términos comparables. El análisis costo-beneficio es la principal herramienta analítica utilizada por los economistas para evaluar las decisiones ambientales. Este se utilizo por primera vez en estados unidos a comienzo del siglo XX para los proyectos de desarrollo hídrico del U $ Army Corps of Engineers. En la actualidad este análisis se utiliza en todo el sector público. Algunas veces sirve como guía para la selección de políticas eficaces.

El análisis de costo-beneficio representa para el sector público lo que un estado de pérdidas y ganancias construye para una compañía de negocios. Si una compañía automotriz se propone introducir un nuevo modelo, desearía tener una idea de cómo afecta sus ganancias. Por una parte, calcularía los costos de producción y distribución: mano de obra, materia prima, energía, equipo para el control de emisiones, transporte, etc. Por otra parte, calcularía los ingresos mediante el; análisis de mercado. Luego compararía los ingresos con los costos anticipados. El análisis costo-beneficio es un ejercicio análogo para programas en el sector público. Pero existen dos críticas entre el análisis costo-beneficio y el ejemplo sobre el automóvil: este análisis es una herramienta para ayudar a tomar decisiones públicas, tomando en cuenta los intereses de la sociedad en general y no desde el criterio de una sola empresa con ánimo de lucro; con frecuencia este análisis se aplica a políticas y programas que tienen tipos de productos fuera del mercado como, por ejemplo, los mejoramientos en la calidad ambiental.

El análisis costo-beneficio ha conducido a dos vías entrelazadas. La primera se encuentra entre sus practicantes, economistas de dentro y fuera de las entidades públicas que han desarrollado estas técnicas, tratado d producir mejores y extendido el campo de acción del análisis. La segunda está entre los políticos y administradores, quienes han establecido las reglas y procedimientos que rigen el uso del análisis costo-beneficio para la toma de decisiones públicas. En estados unidos, el análisis costo-beneficio se utilizó por primera vez en conjunto con el United States Flood Control Act de 1936. En esa ley se especificó que sería justificable la participación federal en proyectos para controlar el desbordamiento de ríos importantes del país “si los beneficios acumulados para cualquier excedente en los costos calculados” con el fin de determinar si un proyecto cumplies este criterio, ya fuera la construcción de una represa para el control de desbordamiento o un gran proyecto para construir un dique, fue necesario desarrollar procedimientos para medir estos beneficios y costos.

Estos procedimientos se han modificado en varias ocasiones, a medida ha evolucionado y se ha desarrollado el análisis costo-beneficio. El estatus y el papel del análisis costo-beneficio de los recursos naturales público y en la toma de decisiones ambientales ha sido tema de continuas discusiones, como también de conflictos políticos y administrativos. Las entidades públicas han sido censuradas con frecuencia por parte de agentes externos por tratar de utilizar el análisis costo-beneficio para justificar mayores presupuestos. Algunos observadores han adoptado la posición de que el análisis costo-beneficio realmente constituye un intento de frustrar el proceso de
discusión y toma de decisiones políticas que tendrían lugar alrededor de potenciales programas y proyectos públicos. En la década de los 80' la administración conservadora de Washington buscó un obstáculo más para la aprobación de programas públicos, a fin de reducir su alcance.

No obstante, a pesar de su historial de altibajos, el análisis costo-beneficio es actualmente la principal herramienta para la evaluación económica de programas públicos en la administración de recursos naturales, tales, como proyectos para el control de inundaciones, irrigación, fuerza hidroeléctrica, mejoramientos de puertos y proyectos alternativos de suministro de energía. El análisis costo-beneficio forma parte integral del proceso de análisis del impacto ambiental diseñado para evaluar los impactos de los desarrollos públicos y privados en los recursos ambientales. Su uso en la evaluación de programas de control de la contaminación ambiental esta menos difundido. La Environmental Protection Agency (EPA) de estados unidos no realiza, en forma rutinaria, análisis costo-beneficio para todos sus programas reguladores. Esto se debe en parte a que las leyes no lo requieren, y probablemente a que la medición de beneficios es bastante difícil. Además, la EPA, al igual que otras entidades federales, ha buscado desarrollar mejores métodos para calcular los beneficios y los costos de los programas ambientales.

El marco conceptual básico del análisis costo-beneficio.

Como su nombre lo indica, el análisis costo-beneficio implica medir, adicionar y comparar todos los beneficios y costos de un proyecto o programa público determinado. Existen esencialmente cuatro pasos en un análisis costo-beneficio.

1. Especificar en forma clara el proyecto o programa
2. Describir en forma cuantitativa las entradas (insumos) y salidas (resultados) del programa.
3. Calcular los costos y beneficios sociales de estas entradas y salidas.
4. Comprar estos beneficios y costos.

Cada uno de estos pasos está por varios componentes. Al realizar un análisis costo-beneficio, el primer paso consiste en decidir la perspectiva desde la cual se va a realizar el estudio. El análisis costo-beneficio es una herramienta de análisis público, pero en realidad existen muchos públicos. Si el lector fuera a realizar un estudio para una entidad nacional, lo “publico” normalmente estaría constituido por todas las personas que viven en el país específico. Pero si fuera para una entidad de planeación urbana o regional, a fin de realizar un análisis costo-beneficio de un programa ambiental local, indudablemente se concentraría en los beneficios y los costos que se generan para las personas que viven en aquellas áreas. En el otro extremo, el aumento de problemas ambientales globales ha forzado a emprender algunos análisis costo-beneficio desde una perspectiva mundial.

Cuando se haya decidido la perspectiva desde la cual se va a realizar el estudio, el primer paso incluye una especificación completa de los principales proyectos o programas: localización, calendarios, grupos involucrados, vínculos con otros programas, etc. Se puede distinguir entre los dos grupos básicos de programas ambientales públicos para los cuales se realizan el análisis costo-beneficio.

1- Proyecto físico.

Involucran la producción pública directa: las plantas públicas de tratamiento de desperdicios, proyectos de recuperación de playas, incineradores de desechos peligrosos, proyectos de mejoramiento de hábitat, compra de tierras para la preservación, y otros proyectos.

2- Programa de regulación.
Se proyectan para ejecutar las leyes y regulaciones ambientales, como los estándares para el control de la contaminación, opciones tecnológicas, prácticas de eliminación de desperdicios, restricciones a los proyectos de urbanización, y otros programas.

Cuando se hayan especificado el proyecto o programa básico, el siguiente paso consiste en determinar los flujos relevantes de entradas y salidas. En algunos proyectos esto razonablemente fácil. Si se proyecta construir una instalación para el tratamiento de aguas de desperdicios, es lo personal de ingeniería estar en capacidad de suministrar una especificación física completa de la planta, junto con los insumos requeridos para construirla y mantenerla en funcionamiento. Para otros tipos de programas esto es mucho más difícil. Los proyectos o programas relacionados con el ambiente por lo general no duran solo un año, sino que se extienden por largos periodos. Por consiguiente, la tarea de especificar entradas y salidas involucra pronósticos de acontecimientos futuros, con frecuencia bastante remotos. Esto destaca la importancia de conocer con la mayor precisión los patrones de crecimiento futuros y tasas futuras de cambios tecnológicos, además de los posibles cambios en las preferencias de los consumidores.

El próximo paso consiste en asignar un valor a los flujos de entradas y salidas; es decir, medir costos beneficio. Esto se podría hacer con cualquier unidad que se desee, pero normalmente se intenta medir los beneficios y los costos en términos monetarios. Esto significa que se necesita una métrica única con la cual se puede interpretar todos los impactos de un proyecto o programa, con el fin de compararlos entre sí, al igual podrán reducir a términos monetarios debido a que no es posible hallar una forma para medir cuanto valoran las personas estos impactos. En este caso, los resultados monetarios del análisis costo-beneficio se deben complementar con los cálculos intangibles de esos impactos.

Otro elemento importante a tomar en cuenta en la evaluación de impacto ambiental sobre todo de proyectos de inversión pública es el análisis de gestión de riesgos que a continuación examinaremos.

4.6 ANALISIS DE GESTION DE RIESGOS EN PROYECTOS DE INVERSIÓN PUBLICA

Los desastres son eventos socio naturales, ambientales y antropogénicos, cuya materialización es el resultado de la construcción social del riesgo, y su reducción debe ser parte de los procesos de toma de decisiones. El nuevo paradigma de la gestión del riesgo sustituye al enfoque emergencista de atención del desastre, el cual es relevante porque se incorpora desde el Sistema Nacional de Planificación del Desarrollo, buscando lograr una efectiva reducción de los impactos negativos producidos por eventos adversos, y una mitigación de las condiciones de vulnerabilidad en que se encuentra la población. Por esta razón, es necesario fortalecer en el ámbito institucional, la utilización de metodologías e instrumentos de gestión del riesgo en los procesos de pre inversión y de inversión pública, y así mejorar su calidad y coadyuvar al desarrollo sostenible del país.

La inversión pública como parte del proceso de desarrollo es el espacio donde se concreta de manera específica la reducción de las vulnerabilidades, porque permite de mejor manera, afrontar las amenazas naturales o provocadas y con ello reducir la construcción y/o reducción del riesgo.

En este sentido se requiere del instrumental técnico que permita ubicar en el ciclo de los proyectos, los criterios, lineamientos y orientaciones para incorporar la gestión del riesgo bajo el concepto de inversión segura, en las fases de pre inversión, ejecución y operación.

La guía de análisis de gestión de riesgos es una herramienta que busca, contribuir en los procesos de formulación de proyectos de inversión pública, principalmente, los que forman capital fijo, como un mecanismo que incorpora la variable riesgo en las diferentes fases del ciclo del proyecto, buscando no generar nuevos riesgos o reducir los riesgos existentes. Cabe reiterar que con este instrumental, se pretende identificar aquellos factores de riesgo que inciden en el proyecto, lo cual es un proceso que se complementa con la evaluación de impacto ambiental,
misma que se refiere fundamentalmente al grado de afectación que causará el proyecto al ambiente.

El proceso consiste en primer lugar en identificar las amenazas naturales, socio-naturales o antrópicas presentes en la zona, así mismo analiza las amenazas que podrían afectar el proyecto de inversión pública propuesto, en cuanto a su frecuencia e intensidad. El segundo paso, consiste en analizar y calificar la vulnerabilidad por exposición del sitio, identificando las condiciones que le afectan, así como identificar criterios técnicos de fragilidad y resiliencia que se deben de considerar en el diseño, propuesta y operación del proyecto que se pretende instalar en el sitio analizado. Adicionalmente se trata de mantener la relación con las diferentes amenazas identificadas, priorizadas y agrupadas en el paso anterior.

El tercer paso de la guía, está diseñado para orientar a formuladores y evaluadores de los proyectos, que le permite al formulador, identificar e incorporar medidas de mitigación /prevención pertinentes y necesarias para la reducción del riesgo, las cuales deberán contar con planos constructivos, presupuesto y especificaciones técnicas; mismas que servirán de base para su posterior monitoreo; a fin de salvaguardar la infraestructura, los bienes que lo conformarán así como la vida del personal, usuarios o beneficiarios del proyecto. Para el evaluador, le ofrecerá los criterios técnicos que le permiten verificar la calidad de la inversión propuesta.

En los proyectos de inversión pública la gestión del riesgo tiene un enfoque integral que se aplica a lo largo de todas las fases y etapas del ciclo del proyecto: pre inversión, inversión y operación.

SECUENCIA LÓGICA DE LA GESTIÓN DEL RIESGO EN LA FORMULACIÓN DE PROYECTOS DE INVERSIÓN PÚBLICA

En el Diagnóstico:
- Revisión documental de antecedentes sobre amenazas
- Análisis de antecedentes y pronóstico de amenazas
- Análisis del nivel de frecuencia e intensidad de amenazas en la zona
- (Síntesis interpretativa de las amenazas en la zona.
- Análisis de vulnerabilidad del sitio por exposición.

En la formulación:
- Análisis de criterios técnicos por fragilidad
- Análisis de criterios técnicos por resiliencia
- Estimación del índice de vulnerabilidad del proyecto
- Identificación de medidas de reducción de riesgo
- Identificación de costos y beneficios por opción.
- Evaluación de opciones y selección de la mejor medida
 De reducción de riesgo.
 Detalle de las medidas de reducción de riesgo

Evaluación: Incorporar y evaluar la reducción de riesgo en la propuesta técnica y Económica de ejecución y evaluación del proyecto.

A continuación se expone un estudio de caso para ilustrar lo que debe contener un estudio de impacto ambiental que es el instrumento fundamental para incorporar su análisis al proceso de evaluación de impacto ambiental que requieren todas las actividades económicas y los proyectos de inversión sobre todo cuando son de gran magnitud.
INTRODUCCIÓN

El marco legal de Nicaragua establece la obligatoriedad del Estado a mantener y proteger el medio ambiente es así que en los artículos 60, 89, 102 y 181 de la Constitución Política de Nicaragua establecen como un derecho social el garantizar un medio ambiente sano para todos; el derecho del Estado de proteger, conservar y utilizar racionalmente los recursos naturales.

Además Nicaragua ha firmado y ratificado una serie de Declaraciones e Informes Multilaterales como, el informe de la Comisión Brundthland, la Decisión 14/25 del Programa de las Naciones Unidas para el Medio Ambiente PNUMA- y los Principios y Declaración de Río, que lo obligan a la protección del ambiente, siendo la Evaluación Ambiental un instrumento de gestión ambiental de naturaleza preventiva por excelencia, donde se integran las preocupaciones ambientales en la toma de decisiones, valorando de manera integral todos los intereses en juego, buscar al máximo la participación ciudadana para lograrlo, dirigir a la causa y no al efecto todos los esfuerzos.

Es así que el Decreto 76.2006 : “Sistema de Evaluación Ambiental” tiene por objeto establecer las disposiciones que regulan el Sistema de Evaluación Ambiental de Nicaragua, el cual según el Art. 2 se aplica a:

3. Planes y Programas de Inversión Sectoriales y Nacionales, de conformidad con el artículo 28 de la Ley No. 290, Ley de Organización, Competencias y Procedimientos del Poder Ejecutivo.

2.- Actividades, Proyectos, Obras e Industrias sujetos a realizar Estudios de Impacto Ambiental

Donde además se conceptualiza como “Estudio de Impacto Ambiental (EIA): Conjunto de actividades técnicas y científicas destinadas a la identificación, predicción y control de los impactos ambientales de un proyecto y sus alternativas, presentado en forma de informe técnico y realizado según los criterios establecidos por las normas vigentes, cuya elaboración estará a cargo de un equipo interdisciplinario, con el objetivo concreto de identificar, predecir y prevenir los impactos al medio ambiente”.

Y Evaluación Ambiental (EA) como el “Proceso compuesto de actos administrativos que incluye la preparación de estudios, celebración de consultas públicas y que concluyen con la autorización o denegación por parte de la Autoridad competente, nacional, regional o territorial”..
Dentro de este contexto el presente documento tiene como finalidad presentar una propuesta técnica y económica para la elaboración del Estudio de impacto ambiental del proyecto “Centro de Transformación del Aluminio en Nicaragua” en la etapa de acabado a partir de discos y bobinas laminadas y recocidas que se suministran desde la planta CVG ALUNASA en Costa Rica.

JUSTIFICACION

La realización del análisis de Impacto Ambiental es importante en la formulación de cualquier proyectos o actividad productiva porque en primer lugar es un requisito legal que establece la Ley General del Ambiente (216), y en segundo lugar garantiza la sostenibilidad económica, social y ambiental del proceso productivo.

El análisis de entorno que se elabora en la Evaluación de Impacto Ambiental permite describir el estado de los recursos que rodean la actividad productiva, así como también detectar cualquier alteración ambiental que pueda producirse durante el proceso de producción.

Una vez analizado los posibles impactos se clasifican de acuerdo a su magnitud y se propone una serie de alternativas que eliminen o disminuyan los efectos provocadas, de esta manera se disminuye o se ahorrán costos posteriores.

La Evaluación Ambiental es utilizada como un instrumento para la gestión preventiva, con la finalidad de identificar y mitigar posibles impactos al ambiente de planes, programas, obras, proyectos, industrias y actividades, e incluye: la preparación de Estudios, celebración de consultas públicas y acceso a la información pública para la toma de decisión.

OBJETIVO GENERAL DEL ESTUDIO

Elaborar un Análisis de Impacto Ambiental a los procesos de transformación del aluminio llevados a cabo por la empresa CVG ALUMNIOS NACIONALES S. A.

OBJETIVOS ESPECÍFICOS:

Verificar si la actividad industrial que se desarrollará en la empresa requiere un permiso de impacto ambiental.

- Describir el estado del entorno del sitio donde se ubicará la fábrica antes de iniciar operaciones.

- Verificar si se produce algún impacto ambiental durante el desarrollo de las fases del proceso de producción.

- Elaborar Plan de Monitoreo de impactos y medidas remediales en el caso que se encuentre algún impacto ambiental provocado por la empresa.

- Levantar y documentar un estado de opinión de la población aledaña a la empresa sobre las percepciones sobre esta actividad productiva a desar

ANTECEDENTES

El proceso productivo para la transformación de las materias primas y obtención de productos de aluminio está constituido, generalmente por las etapas de fundición, colado, laminación recocado y
acabado. Las primeras cuatro etapas requieren de equipos especializados y ciertos volúmenes de producción por lo que en el presente proyecto solo se contempla ejecutar en el Centro de Transformación del Aluminio en Nicaragua la etapa de acabado a partir de discos y bobinas laminadas y recocidas que se suministrarán desde la planta CVG ALUNASA en Costa Rica.

Por tanto la Planta Nicaragua desarrollará únicamente la etapa de acabado que contempla la fabricación de 80tn/mes en ollas de aluminio elaboradas en conjuntos de 5 ollas con sus respectivas tapas, denominados “batería” en un rango de dimensiones que en el sector se identifican por números y se espera el estudio del potencial del mercado que actualmente se elabora, para definir el rango a productor en la Planta Nicaragua. Para esta capacidad de producción se estima un 10% de desperdicios de discos o de ollas lo cuales se venderán como chatarra.

Para la fabricación de las ollas se llevarán a cabo los siguientes procesos:

- Fabricación del cuerpo de la olla
- Rebordeado
- Pulido
- Fabricación de tapas y asas.
- Remachado de asas
- Armado
- Empaque y Embalaje.

Además se destacan los siguientes proceso productivos a ejecutar por la empresa:

Proceso de Repujado
Fabricación de rollos de Foil doméstico e institucionales.
Fabricación de núcleos de cartón
Rebobinado de Rollos de Foil.
Conformación de Cajitas
Fabricación de hojas intercaladas
Fabricación de envases semirrígidos
Taller de embalaje

ASPECTOS METODOLOGICOS

En un primer momento se revisara en que categoría se ubica la actividad de acuerdo al Decreto 76-2006 para verificar los requerimientos que establece la Dirección General de Calidad Ambiental, luego se llenara un formulario que es emitido por esta dirección donde se requiere de una visita de campo al lugar objetivo para el levantamiento topográfico que permitirá la elaboración de un mapa del sitio donde se ubicara la empresa.

Posteriormente se realizarán los análisis de entorno y del proceso productivo, lo que incluye el levantamiento de un estado de opinión de los pobladores vecinos al sitio, y luego embace a la información recabada se iniciará el proceso de análisis.

Para la elaboración del Análisis de Impacto Ambiental existen una serie de metodologías que se aplican a criterio del consultor o de acuerdo a la actividad productiva que se esta evaluando.

En este caso utilizaremos una de las metodologías mas sencilla ya que a priori podemos visualizar que los efectos ambientales que provoca este proceso productivo son mínimos.
Nos referimos a la elaboración de una matriz de causa – efecto donde se detallen las etapas del proceso, los posibles impactos y las medidas de mitigación. Esta metodología comprende tres fases:

FASE I CARACTERIZACION DE LA ZONA DE ESTUDIO

Antes de realizar la matriz se parte de una caracterización socioeconómica del entorno de la empresa, después se elabora una caracterización del medio físico en el cual se desarrollará la empresa lo que contempla uso actual del suelo y estado de recursos, después se detallan las actividades desarrolladas en la zona de estudio ante del proyecto.

FASE II INTERACCIÓN DE LAS ACTIVIDADES DEL PROYECTO Y LOS COMPONENTES AMBIENTALES.

Para identificar las actividades del proyecto, los componentes ambientales y sus indicadores de cambio en el área de estudio, se ha realizado una matriz de interacción con el fin de identificar los impactos potenciales que se derivan de las actividades de desarrollo del proyecto (mediante combinación de la información proporcionada).

FASE III EVALUACION DE IMPACTOS

La evaluación de impactos consiste en definir los atributos a evaluar en cada uno de los impactos a analizar y la asignación de una escala relativa de valores para cada uno de los atributos. Luego se describe el proceso desarrollado hasta la calificación de cada uno de los impactos por las actividades del proyecto.

IDENTIFICACIÓN, EVALUACIÓN Y ANÁLISIS DE LOS IMPACTOS AMBIENTALES

Evaluación y Análisis de los Impactos Ambientales

Para la evaluación de los impactos ambientales se realizó en forma independiente para cada acción a realizar durante el proyecto y su respectivo componente ambiental afectado y luego se aglomeraron en una tabla general de la evaluación.

Se utilizaron parámetros semicuantitativos, los cuales se midieron en escalas relativas. Las siguientes es una lista de los criterios utilizados para evaluar el impacto de esas acciones, su rango y calificación.

a) **Carácter (CI)**

Define si la acción o fuente de impacto del proyecto, genera un efecto positivo (+) o negativo (-) en el componente ambiental afectado.

<table>
<thead>
<tr>
<th>Rango</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negativo</td>
<td>(-)</td>
</tr>
<tr>
<td>Positivo</td>
<td>(+)</td>
</tr>
</tbody>
</table>

b) **Intensidad (I)**

Representa la cuantía o el grado de incidencia de la acción sobre el factor en el ámbito específico en que actúa.
Grado de perturbación. Amplitud de la alteración producida por la fuente sobre el componente; se evalúa en función del siguiente rango:

<table>
<thead>
<tr>
<th>Rango</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>12</td>
</tr>
<tr>
<td>Muy alta</td>
<td>8</td>
</tr>
<tr>
<td>Alta</td>
<td>4</td>
</tr>
<tr>
<td>Media</td>
<td>2</td>
</tr>
<tr>
<td>Bajo</td>
<td>1</td>
</tr>
</tbody>
</table>

c) Extensión (Ext)

Se refiere al área de influencia teórica del impacto en relación con el en torno del proyecto.

<table>
<thead>
<tr>
<th>Rango</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critico</td>
<td>+4</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
</tr>
<tr>
<td>Extenso</td>
<td>4</td>
</tr>
<tr>
<td>Parcial</td>
<td>2</td>
</tr>
<tr>
<td>Puntual</td>
<td>1</td>
</tr>
</tbody>
</table>

d) Sinergia (SI)

El criterio contempla el reforzamiento de dos o más efectos simples pudiéndose generar efectos sucesivos y relacionados que acentúan las consecuencias del impacto analizado.

<table>
<thead>
<tr>
<th>Rango</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>No sinérgico</td>
<td>1</td>
</tr>
<tr>
<td>Sinergico</td>
<td>2</td>
</tr>
<tr>
<td>Muy sinérgico</td>
<td>4</td>
</tr>
</tbody>
</table>

e) Persistencia (Pe)

Tiempo en que supuestamente permanecería el efecto desde su aparición hasta que el factor retornaría a las condiciones previas

<table>
<thead>
<tr>
<th>Rango</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugaz</td>
<td>1</td>
</tr>
<tr>
<td>Temporal</td>
<td>2</td>
</tr>
<tr>
<td>Permanente</td>
<td>4</td>
</tr>
</tbody>
</table>

f) Efecto (EF)

La forma de manifestación del efecto sobre un factor como consecuencia de una acción.

<table>
<thead>
<tr>
<th>Rango</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directo</td>
<td>Indirecto</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>D</td>
<td>I</td>
</tr>
</tbody>
</table>

g) Momento (MO)
Alude al tiempo que transcurre entre la aparición de la acción y el comienzo del efecto sobre el factor.

<table>
<thead>
<tr>
<th>Rango</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largo plazo</td>
<td>1</td>
</tr>
<tr>
<td>Mediano plazo</td>
<td>2</td>
</tr>
<tr>
<td>Corto plazo</td>
<td>4</td>
</tr>
<tr>
<td>Crítico</td>
<td>+4</td>
</tr>
</tbody>
</table>

h) Acumulación (AC)
Este criterio da idea del incremento progresivo de la manifestación del efecto cuando persiste de forma continua o reiterada la acción que lo genera.

<table>
<thead>
<tr>
<th>Rango</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>1</td>
</tr>
<tr>
<td>Acumulativo</td>
<td>4</td>
</tr>
</tbody>
</table>

I) Recuperabilidad (MC)
Se refiere a la posibilidad de reconstrucción total o parcial del factor afectado.

<table>
<thead>
<tr>
<th>Rango</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recuperable de Inmediato</td>
<td>1</td>
</tr>
<tr>
<td>Recuperable mediano plazo</td>
<td>2</td>
</tr>
<tr>
<td>Mitigable</td>
<td>4</td>
</tr>
<tr>
<td>Irrecuperable</td>
<td>8</td>
</tr>
</tbody>
</table>

j) Reversibilidad (Rv)
Califica la posibilidad del factor afectado de retornar a las condiciones previas a la acción del impacto por medios naturales

<table>
<thead>
<tr>
<th>Rango</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corto plazo</td>
<td>1</td>
</tr>
<tr>
<td>Mediano plazo</td>
<td>2</td>
</tr>
<tr>
<td>Irreversible</td>
<td>4</td>
</tr>
</tbody>
</table>

k) Periodicidad (PR)
Regularidad de manifestación del efecto

<table>
<thead>
<tr>
<th>Rango</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>
L) Importancia del efecto (IM)

Constituye la expresión numérica de la interacción o acción conjunta de los distintos criterios usados en la calificación de los impactos ambientales.

\[
IM = + (3 I + 2EX + SI + PE + EF + MO + AC + MC + RV + PR)
\]

CLASIFICACIÓN DEL IMPACTO

<table>
<thead>
<tr>
<th>CLI</th>
<th>IM valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatible</td>
<td>< 25</td>
</tr>
<tr>
<td>Moderado</td>
<td>25 < IM < 50</td>
</tr>
<tr>
<td>Severo</td>
<td>50 < IM < 75</td>
</tr>
<tr>
<td>Critico</td>
<td>IM > 75</td>
</tr>
</tbody>
</table>
ACCIONES DE LA FASE DE CONSTRUCCION DE LA EMPRESA ALUMINIOS

A. Remoción de capa vegetal matorrales o desbroce en acceso principal y áreas alrededor a la nave industrial
B. Corte de algunos arbustos alrededor de nave industrial.
C. Movimiento tierra y nivelación terreno en algunas partes del terreno.
D. Transporte de materiales de construcción.
E. Reparaciones a la nave principal.
F. Construcción de áreas administrativas y parqueo.
G. Instalación de servicios básicos agua y luz.
H. Instalación de equipos (tornos, bandas transportadoras, calderas, troqueles, entre otros)

ACCIONES DE LA FASE DE OPERACIÓN DEL PROCESO PLANTA DE ALUMINIO

I. Transporte de materia prima hacia la planta de transformación de aluminio.
J. Descarga de materia prima discos y bobinas.
K. Colocación de materiales en bodegas.
L. Fabricación de ollas de aluminio por proceso de repujado.
M. Fabricación de Rollos de Foil.
N. Fabricación de hojas intercaladas
O. Fabricación de envases semirrígidos
P. Generación desechos sólidos por fabricación de ollas 10% producción.
Q. Generación desechos por Fabricación de Rollos de Foil.
R. Generación de desechos por Fabricación de hojas intercaladas.
S. Generación de desechos por Fabricación de envases semirrígidos.

ACCIONES DE LA FASE DE CIERRE DE OPERACIÓN DEL PROCESO PLANTA DE ALUMINIO

T. Desmantelamiento de maquinaria
U. Transporte de equipos
V. Demolicion de infraestructura
IDENTIFICACION DE LOS IMPACTOS DE PROCESO PRODUCTIVO

1. Modificación de la potencialidad de erosión del suelo por cambios de la topografía del terreno, ruptura de la capa vegetal por las actividades de construcción.

2. Contaminación del suelo por disposición de materiales de construcción.

3. Contaminación al suelo por generación de desechos sólidos durante el proceso de elaboración de ollas.

4. Contaminación al suelo por generación de desechos domésticos de los trabajadores.

5. Contaminación al suelo por la generación de aguas residuales y lodos del sistema de tratamiento de aguas residuales domésticos.

6. Alteración del escurrimiento superficial como consecuencia de las actividades constructivas.

7. Contaminación de las aguas subterráneas por generación de aguas residuales domésticas.

8. Contaminación del aire por el polvo y las emisiones de gases de los motores de combustión interna debido a los trabajos de construcción e instalación de equipos.

9. Contaminación sónica de la atmósfera por ruidos de las maquinarias y equipos que ejercerán efectos dañinos para la salud.

10. Contaminación a la atmósfera por generación de polvo y ruido por cierre de operaciones.

11. Afectación flora por remoción de capa vegetal.

12. Aumento del nivel de riesgo por accidentes ocasionados por la obras en construcción y aumento de las personas en la vía.

13. Generación de fuentes de empleo inducida por la fuerza de trabajo requerida para la construcción de la Planta Industrial.

14. Efectos sobre la población económicamente activa relacionados con el aumento de nivel y cambio de ocupación.
MATRIZ DE IMPACTO CAUSA - EFECTO

PROYECTO "CENTRO DE TRANSFORMACION DE ALUMINIO" NICARAGUA - VENEZUELA

ALUMINIOS DEL ALBA NICARAGUA, S.A. (ALUNISA)

FACTORES MEDIOAMBIENTALES Y SOCIOECONOMICOS

<table>
<thead>
<tr>
<th>MEDIO FISICO</th>
<th>MEDIO BIOLOGICO</th>
<th>MEDIO SOCIOECONOMICO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FASE DE CONSTRUCCION</td>
<td>FASE DE OPERACION</td>
<td>FASE DE CIERRE</td>
</tr>
<tr>
<td>REMOCION DE SUELOS</td>
<td>INSTALACION DE EQUIPOS</td>
<td>DESMANTELAMIENTO DE MAQUINARIA</td>
</tr>
<tr>
<td>CORTE DE SUELOS</td>
<td>TRANSPORTE DE MATERIALES</td>
<td>TRANSPORTE DE EQUIPOS</td>
</tr>
<tr>
<td>MONTAJE DE NAVE ALUMINIO</td>
<td>INSTALACION DE SERVICIOS</td>
<td>DEMOLICION DE INFRAESTRUCTURA</td>
</tr>
<tr>
<td>DE NAVE INDUSTRIAL</td>
<td>AGUA Y LUZ</td>
<td></td>
</tr>
<tr>
<td>CONSTRUCCION DE AREA ADMINISTRATIVA Y DE PARQUEO</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>COLOCACION DE MATERIALES EN BODEGA</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>TRANSPORTE DE MATERIA PRIMA HASTA LA PLANTA DE TRANSFORMACION DE ALUMINIO</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>INSTALACION DE EQUIPOS</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>INSTALACION DE EQUIPOS</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>REMOCION DE SUELOS</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>CORTE DE SUELOS</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>MONTAJE DE NAVE ALUMINIO</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>DE NAVE INDUSTRIAL</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>CONSTRUCCION DE AREA ADMINISTRATIVA Y DE PARQUEO</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>COLOCACION DE MATERIALES EN BODEGA</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>TRANSPORTE DE MATERIA PRIMA HASTA LA PLANTA DE TRANSFORMACION DE ALUMINIO</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>INSTALACION DE EQUIPOS</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>INSTALACION DE EQUIPOS</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>REMOCION DE SUELOS</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>CORTE DE SUELOS</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>MONTAJE DE NAVE ALUMINIO</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>DE NAVE INDUSTRIAL</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>CONSTRUCCION DE AREA ADMINISTRATIVA Y DE PARQUEO</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>COLOCACION DE MATERIALES EN BODEGA</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>TRANSPORTE DE MATERIA PRIMA HASTA LA PLANTA DE TRANSFORMACION DE ALUMINIO</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>INSTALACION DE EQUIPOS</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>INSTALACION DE EQUIPOS</td>
<td>INSTALACION DE EQUIPOS</td>
<td></td>
</tr>
<tr>
<td>IMPACTOS</td>
<td>CRITERIOS DE EVALUACION DE IMPACTOS</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARACTER</td>
<td>INTENSIDAD</td>
</tr>
<tr>
<td></td>
<td>POSITIVO</td>
<td>NEGATIVO</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>8</td>
</tr>
</tbody>
</table>

MATRIZ DE CRITERIOS DE EVALUACION DE IMPACTOS AMBIENTALES
PROYECTO “CENTRO DE TRANSFORMACION DE ALUMINIO” NICARAGUA – VENEZUELA
ALUMINIOS DEL ALBA NICARAGUA, S.A (ALUNISA)
<table>
<thead>
<tr>
<th>ACTIVIDADES DEL PROYECTO</th>
<th>FASE DE CONSTRUCCION</th>
<th>FASE DE OPERACIÓN</th>
<th>FASE DE CIERRE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTORES AMBIENTALES Y SOCIOECONOMICAS</td>
<td>Remoción de capa vegetal o desbroce en acceso principal y área vecindad de la nave industrial</td>
<td>Cobertura de terreno y nivelación de terreno</td>
<td>Instalación de servicios básicos agua y luz</td>
<td>Transporte de materiales alMACER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Desmantelamiento de maquinaria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Demolición de infraestructura</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transporte de equipos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Derrubio de infraestructura</td>
</tr>
<tr>
<td>SUELOS</td>
<td>-28</td>
<td>-18</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td></td>
<td>-34</td>
<td>-34</td>
<td>-34</td>
<td>-34</td>
</tr>
<tr>
<td></td>
<td>-35</td>
<td>-35</td>
<td>-35</td>
<td>-35</td>
</tr>
<tr>
<td>AGUA</td>
<td>-27</td>
<td>-27</td>
<td>-54</td>
<td>-54</td>
</tr>
<tr>
<td></td>
<td>-54</td>
<td>-54</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Los factores ambientales que reciben mayores impactos son el Aire y después el Suelo ya que muchos de los impactos identificados tienden a modificar las características de estos. Y la actividad de la industria que afecta más a los factores ambientales es el ruido por la maquinaria y equipos que se utilizaron.

VALORACION CUALITATIVA DE LOS IMPACTOS MÁS SIGNIFICATIVOS

ETAPA DE CONSTRUCCIÓN

Suelo

4. Contaminación al suelo por generación de desechos domésticos de los trabajadores.
Se considera un impacto negativo, de intensidad alta, parcial, sinérgico, temporal, de efecto directo, se manifiesta a corto plazo, acumulativo, recuperable a mediano plazo, retornable a mediano plazo, manifestación periódica y se clasifica como impacto moderado.

5. Contaminación al suelo por la generación de aguas residuales y lodos del sistema de tratamiento de aguas residuales domésticos.

Se considera un impacto negativo, de intensidad alta, parcial, no sinérgico, permanente, de efecto indirecto, se manifiesta a corto plazo, acumulativo, recuperable a mediano plazo, retornable a mediano plazo, manifestación periódica y se clasifica como impacto moderado.

Hidrología superficial y subterránea

7. Contaminación de las aguas subterráneas por generación de aguas residuales domésticas.

Se considera un impacto negativo, de intensidad muy alta, extenso, sinérgico, permanente, de efecto directo, se manifiesta a corto plazo, acumulativo, mitigable, retornable a mediano plazo, manifestación periódica y se clasifica como impacto severo.

Aire y ruido

8. Contaminación del aire por el polvo y las emisiones de gases de los motores de combustión interna debido al trabajo construcción e instalación de equipos

Se considera un impacto negativo, de intensidad alta, extenso, sinérgico, temporal, de efecto indirecto, se manifiesta a corto plazo, acumulativo, mitigable, retornable a corto plazo, manifestación continua y se clasifica como impacto moderado.

9. Contaminación sónica de la atmósfera por ruidos de las maquinarias y equipos que ejercerán efectos dañinos para la salud.

Se considera un impacto negativo, de intensidad muy alta, extenso, sinérgico, permanente, de efecto indirecto, se manifiesta a corto plazo, acumulativo, mitigable, retornable a corto plazo, manifestación continua y se clasifica como impacto severo.

10. Contaminación a la atmósfera por generación de polvo y ruido por cierre de operaciones

Se considera un impacto negativo, de intensidad alta, extenso, sinérgico, temporal, de efecto indirecto, se manifiesta a corto plazo, acumulativo, mitigable, retornable a corto plazo, manifestación continua y se clasifica como impacto moderado.

Características socioeconómicas

11. Aumento del nivel de riesgo por accidentes ocasionados por la obras en construcción y aumento de las personas en la vía.
Se considera un impacto negativo, de intensidad alta, parcial, no sinérgico, permanente, de efecto directo, se manifiesta a mediano plazo, simple, mitigable, retornable a mediano plazo, manifestación periódica y se clasifica como impacto moderado.

3. **MEDIDAS AMBIENTALES.**

Las Medidas ambientales que se presentan a continuación son en base a la evaluación de impactos ambientales que se realizó anteriormente. Donde estos impactos salieron con una clasificación de severos y algunos moderados que son mitigables.

7. **Contaminación de las aguas subterráneas por generación de aguas residuales domésticas.**

8. **Contaminación del aire por el polvo y las emisiones de gases de los motores de combustión interna debido a los trabajos de construcción e instalación de equipos**

9. **Contaminación sónica de la atmósfera por ruidos de las maquinarias y equipos que ejercerán efectos dañinos para la salud.**

10. **Contaminación a la atmósfera por generación de polvo y ruido por cierre de operaciones**

12. **Aumento del nivel de riesgo por accidentes ocasionados por la obras en construcción y aumento de las personas en la vía.**
<table>
<thead>
<tr>
<th>Área de proyecto</th>
<th>Tipo de impacto</th>
<th>Acciones a realizar</th>
<th>Ubicación de la medida</th>
<th>Tiempo de cumplimiento</th>
<th>Responsable de ejecución</th>
</tr>
</thead>
</table>
| Planta de producción de aluminio y área de administración | Contaminación de aguas subterráneas por generación de aguas residuales | Parar las aguas residuales domesticas se tomará la medida de construcción de un sistema de tratamiento de aguas residuales que cumpla con los parámetros del decreto 33-95 que al menos tendrá lo siguiente,:
- Rejilla
- Tanque séptico
- Filtro Anaeróbico de Flujo ascendente
- Pozo de absorción | En el área de tratamiento | Antes de iniciar operación | El responsable de ejecutar esta medida es la gerencia con un monto aproximado de $US 10,000.00 para unas 40 a 50 personas. |
<p>| Planta de producción de aluminio y población cercana | Contaminación del aire por el polvo y las emisiones de gases de los motores de combustión interna debido a los trabajos de construcción e instalación de equipos | Se regará unas dos veces al día mientras dure la construcción de las infraestructuras y se exigirán vehículos en buen estado mecánico para evitar emisiones de gases. | En toda la construcción | Durante la construcción | La gerencia es la responsable y el costo aproximado es vehículo dos veces al día US$ 200.00 por lo que dure la construcción |</p>
<table>
<thead>
<tr>
<th>Planta de producción de aluminio y población cercana</th>
<th>Contaminación a la atmósfera por ruidos de las maquinerías y equipos que ejercerán efectos dañinos para la salud.</th>
<th>A los trabajadores se les dotara de todos los equipos de seguridad para evitar los daños a la salud, y para evitar que el sonido salga a fuera de las instalaciones deben aislar el área de tornos con material especial. Además deben crear condiciones térmicas adecuadas al personal.</th>
<th>Área de elaboración de ollas.</th>
<th>Antes de operar</th>
<th>La gerencia de y Costo Aproximado US$ 40.00 por cada trabajador en área de elaboración de ollas. Y el material aislante debe cotizarse y estar en dependencia del área total de producción de ollas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta de producción de aluminio y población cercana</td>
<td>Contaminación a la atmósfera por generación de polvo y ruido por cierre de operaciones</td>
<td>A los trabajadores responsables de la desmantelación se les dotara de todos los equipos de seguridad para evitar los daños a la salud.</td>
<td>Toda fabrica</td>
<td>Al cierre</td>
<td>Costo Aproximado US$ 40.00 por cada trabajador.</td>
</tr>
<tr>
<td>Área de entrada a planta de aluminio.</td>
<td>Aumento del nivel de riesgo por accidentes ocasionados por la obras en construcción y aumento de las personas en la vía.</td>
<td>Se deben colocar avisos hacia los trabajadores y avisos dirigidos a los vehículos de personas en la vía, y considerar colocar reductores de velocidad. Además de rotular.</td>
<td>Entrada a empresa</td>
<td>Durante operación de planta</td>
<td>La gerencia y el costo podrá andar en promedio unos US$ 2,000.00.</td>
</tr>
<tr>
<td>internamente en la planta.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. **PLAN DE MONITOREO**

<table>
<thead>
<tr>
<th>COMPONENTE A SER AFECTADO</th>
<th>VARIABLES A MEDIR</th>
<th>FRECUENCIA</th>
<th>PUNTO DE MUESTREO</th>
<th>RESPONSABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua subterránea</td>
<td>PH Sólidos suspendidos (mg/l) Sólidos sediméntales (mg/l) D.B.O (mg/l) D.Q.O (mg/l) Grasa y aceites (mg/l) Coliformes fecales Turbidez Grasa y aceites (mg/l)</td>
<td>Cada tres meses</td>
<td>Salida del sistema de tratamiento de aguas residuales</td>
<td>Gerencia de proyecto</td>
</tr>
<tr>
<td>Atmósfera ruido</td>
<td>No de decibeles, Los parámetros a medir se corresponderán con las normas establecidas en el Código Laboral de Nicaragua</td>
<td>Cada 6 meses</td>
<td>Areas de trabajo las viviendas mas cercana, 200 metros alrededor de la empresa</td>
<td>Gerencia de proyecto</td>
</tr>
<tr>
<td>Aire, polvo</td>
<td>Partículas Totales Suspendidas (PTS) Partículas menores de 10 micras (PM₁₀) Dióxido de nitrógeno (NO₂) Monóxido de carbono (CO)</td>
<td>Cada 6 meses</td>
<td>Areas de trabajo las viviendas mas cercana, 200 metros alrededor de la empresa</td>
<td>Gerencia de proyecto</td>
</tr>
</tbody>
</table>
BIBLIOGRAFÍA

• Gaceta No. 248 (22 diciembre 2006) Decreto 76-2006 Sistema de Evaluación Ambiental.

• Gaceta No. 20 (31 enero 2014) Ley No. 217 Ley General del Medio Ambiente y los Recursos Naturales con reformas incorporadas.

